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INTRODUCTION 
Diffusion of molecules is a powerful indicator of tissue microstructure. The dependence of the MR signal on the acquisition parameters (e.g., the magnitude and 
orientation of the diffusion gradients) can be exploited to infer valuable information from tissue. One way to elucidate microstructural features of the specimen involves 
fitting physical models to such q-space data. Alternatively, the diffusion-weighted MR signal profile can be transformed into a probability distribution function 
quantifying the average probability for molecular displacements. We refer to this function as the apparent propagator. The reconstructed apparent propagator was shown 
to be a valuable marker of tissue microstructure [1]. For example, in three-dimensional q-space acquisitions, the maxima of the orientation-dependent propagator have 
been associated with the orientations of white-matter fibers in the brain [2]. 
In this work, our focus is somewhat different than characterizing the microstructural features of tissue, although our findings are expected to be used in such studies. 
Instead, in more general terms, we discuss the q-space MR propagators and propose three new ways of obtaining them. We illustrate the utility of these new definitions 
of the apparent propagator on diffusion taking place in simple geometries such as partially-restricted environments, curving fibers and spherical compartments. 

THEORY & RESULTS 
In non-imaging MR acquisitions, since the protons precess in the clockwise direction on the plane perpendicular to the main magnetic field, an inverse Fourier 
transformation of the MR signal attenuations should be employed, leading to a displacement probability function consistent with the notion of an ensemble average 
propagator. However, when one is interested in quantifying a displacement distribution in every voxel of an MR image, the propagator derived in the traditional way 
may lead to a counter-intuitive profile when it is non-symmetric. By exploiting the reciprocity of the real diffusion propagator, K(x1,x2,Δ)=K(x2,x1,Δ), an alternative is 
introduced, which implies a forward Fourier transform of the MR signal attenuations, E(q,Δ), yielding a propagator reflected around the origin. We denote the 
propagators obtained in the traditional and new ways by Pim,1(X,u) and Pim,2(X,u), respectively, which are given by 

P im,1 ( X,u) = ∫ E(X,q) e i2πq⋅u dq = ρ N (X − u, X ) K (X − u, X,Δ) , and 
im X .P ,2 ( ,u) = ∫ E(X,q) e −i2πq⋅u dq = ρ N (  X + u, X ) K (X, X + u, Δ)

Here, X,  u and Δ denote the location of the voxel, displacement vector, and the diffusion time, respectively. ρN is a normalized dimensionless spin density function. 
Clearly, the expressions on the right-hand-side of the above equations suggest that Pim,1(X,u) is the probability that a particle will undergo a displacement u before it 
arrives at the voxel location X. In contrast, the second notion of the propagator quantifies the probability that a particle situated at the voxel location will have moved a 
distance u away from the voxel location. 
As an example for a partially restricted environment in which the two definitions of the apparent propagator differ, we consider a very simple geometry where diffusion 
is impeded by an infinite impermeable plate located at X=0, restricting the diffusing particles to the region X>0 as shown in Figure1. Here, ω=(4D0Δ)1/2, where D0 is the 
diffusivity. Following the treatment in [3], we can analytically evaluate the 
MR signal attenuation from which the two notions of the apparent propagators 
can be computed. It is clear that the propagator Pim,1(X,u) leads to a counter­
intuitive picture in which displacements towards the wall appear to be finite 
whereas displacements to the right are terminated although the wall is to the 
left of the voxel. The second notion of the propagator, however, has the more 
intuitive shape as the displacements through the wall are cut off. 

Fig. 1. Top: a sketch of the partially restricted 
geometry. Bottom: the propagators obtained in 
the traditional and new ways. 

Another interesting example that we consider is diffusion taking place inside 
curving fibers. To simulate such a system, we take a circular loop whose 
thickness is assumed to be infinitesimal for simplicity. We shall suppose that 
our images are of dimension 2x2, where each pixel contains one of the 
quadrants of the loop yielding a fiber curving towards a different direction in 
each pixel (see Figure 2). To evaluate the signal and the associated apparent 
propagators, we employed the true propagator, which is obtained by using the 
method in [4]. The long diffusion time propagators are illustrated in Figure 2. 
Clearly, in this case, the first notion of the apparent propagator is more 
intuitive in that the bright rims are consistent with the curvature of the fibers. 

Fig. 2. Top: the circular 
geometry.Each quadrant of the 
circle is within one of the voxels 
of the four-voxel image. The 
propagators derived in the 
traditional (middle) and new 
(bottom) ways.  

Finally, we consider environments possessing axial-symmetry or isotropy, in 
which case having data along one-direction in q-space is sufficient to 
reconstruct two- and three-dimensional propagators, respectively. The
relevant propagators are given by the following sine and Hankel transforms: 
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In Figure 3, we illustrate the propagator for a one-dimensional restricted 
geometry, where the effect of restrictions is characterized by a piecewise 
linear propagator. However, the same one-dimensional Fourier transform of 
the signal for spherical pores leads to a smooth bell-shaped curve, whereas the 
signature of restrictions becomes visible if the three-dimensional isotropic 
transform is applied on the MR signal profile. 

Fig. 3. The one-dimensional propagators for 
diffusion taking place between two parallel plates 
separated by L (red) and inside a spherical pore of 
radius R0 (green). The blue curve is produced by 
employing the three-dimensional isotropic 
transform to the signal for the spherical pore. 

DISCUSSION & CONCLUSION 
Non-symmetric diffusion propagators can be mapped from the complex-
valued MRI signal [5]. When this is done, one should exercise caution about 
the direction of the Fourier transform and its associated meaning as one may 
lead to a more intuitive outcome than the other. In axially-symmetric and 
isotropic environments transforms other than the one-dimensional Fourier 
transform can be employed, which may make information available otherwise 
obscured by the Fourier transform. 
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