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Synopsis
The diffusion MR signal in complex tissue such
as gray matter exhibits non-Gaussian signal attenuation due to exchange and
restrictions. Existing signal models typically ignore one or both effects by

assuming Gaussian diffusion or negligible exchange. We propose a more rigorous
signal model that incorporates both effects. Subsequently, an acquisition
scheme utilizing equal double diffusion

encodings ( ) at
various mixing times, and single diffusion encodings with the same total
weighting ,
is designed to independently characterize the effects of restriction and
exchange.

The method is tested on live and fixed gray matter specimen using a
low-field, high-gradient MR system.

Introduction
Diffusion microstructural MR aims to probe tissue microstructure
and extract parameters via signal models. For white matter, the field has
conjectured a “standard model”  consisting of water confined in

myelinated axons and neurites, modelled as impermeable cylinders, and
extra-cellular water presumed to undergo hindered, Gaussian diffusion –
ignoring exchange. While this standard model and

extensions thereof 
have been effective for understanding some features of white matter, they have
failed to translate to gray matter,  perhaps due to higher
expected membrane permeabilities of gray

matter components,  e.g.,
astrocytes highly expressing aquaporin.  In contrast, models of
exchange such as the Kärger model  typically exclude restriction and
assume that signal components have

different but otherwise Gaussian diffusivities. 
This assumption may underestimate exchange rates, as slower signal attenuation at
high -values
is attributed to slower exchange, rather than non-

Gaussian signal attenuation.

To advance
the study of complex tissue using diffusion MR, we propose a rigorous signal model for certain experimental parameters that incorporates both restriction and
exchange. With this model in

mind, we design an acquisition scheme to characterize restriction and exchange independently.
The method utilizes single and double diffusion encodings (S/DDEs) with equal
total -values
to remove

Gaussian diffusion. Diffusion exchange spectroscopy (DEXSY) measurements, (i.e., DDEs with a storage time ) at a fixed -value but varied  are then used to separate restriction and exchange. The

method is tested on ex vivo neonatal
mouse spinal cord (consisting mostly of gray matter ) using a
permanent magnet system with a strong static gradient (SG).

Theory
Consider spin echoes
formed under an SG with constant amplitude  and variable echo time .
The regimes of signal behavior  are associated with three length
scales: (i) the diffusion length 

;
(ii) the gradient dephasing length, ;
and (iii) the structural length, or size of restriction in the gradient direction, . The free
diffusion regime corresponds to  being the

shortest of ;
diffusion is Gaussian, and the normalized echo intensity is ,
where .
The motional averaging regime corresponds to  being shortest. The

localization regime – in which
there may be persistent signal localized near boundaries – corresponds to  being shortest. The signal attenuation in both
non-Gaussian regimes is characterized by 

 in the limit of large .

For heterogeneous
tissue,  values may be distributed with a probability
density function (PDF)  (see Fig. 1).  When ,
the signal may be approximated as two signal fractions demarcated by 

, ( ),
and  ( ),
corresponding to freely diffusing and motionally-averaged signal attenuating
with

respectively,
where  is an effective spherical radius and  denotes ensemble-averaging over . Given that  and ignoring
exchange during encodings and relaxation

processes,  for a DEXSY experiment becomes
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where  and  are exchanging fractions dependent on .
Applying the similarity transform to the sum  and difference  in -values
described in

Refs.  and taking a finite difference approximation
of the curvature in  w.r.t.  about  (fixing ),
we remove the non-exchanging Gaussian diffusion contribution, and the exchanging

fraction  (by mass balance) can be written as

where

is the difference between equal DDEs ( )
and SDEs with the same ,

and  is a first-order exchange rate.  Restriction and exchange can be further separated by varying .
At small  (i.e., ), ,
such that  depends only on ,

Eq. (6) can thus be fit for ,
after which Eq. (3) can be fit for  (see Fig. 2).

Methods
DEXSY (SG-DEXSY) and double spin echo (SG-SE-SE) pulse sequences
(Fig. 3) were implemented on a PM-10 NMR MOUSE single-sided magnet ( , , ) with a

home-built solenoid RF coil and test
chamber. RF pulse lengths ,
pulse powers , ,
2000 or 8000 echo CPMG train with , 8 points per echo, and 

dwell time. Normalization  corresponds to .
Viable and fixed ex vivo neonatal (postnatal day 1–4) mouse spinal cords
were studied. Spinal cords were bathed in artificial

cerebrospinal fluid at 95%
O /5% CO  and 25 C.
More experimental details can be found in Refs. Curvature along  was assessed at  on a viable spinal cord using both

sequences. In addition,  was assessed at  and  on a fixed spinal cord using the SG-DEXSY
sequence.

Results
Increasing curvature depth with  is observed in viable spinal cord (Fig. 4). Exemplar
plots of Eq. (6) are shown (Fig. 4B). SG-DEXSY data ( )
acquired on fixed spinal cord was fit to Eq. (6) using

all  values or ,
corresponding to  (Fig. 5A). The truncated fit (i.e., whilst )
is better and yields .

Fixing , calculated  values were fit to Eq. (3), yielding  (Figs. 5B–C).

Conclusion
Good fits are obtained to
experimental data whilst ,
demonstrating the feasibility of the signal model and experimental approach. Apparent
tissue parameters  characterizing restrictions

similar to and smaller than  and an exchange rate are measured. Approaches
leveraging well-designed multidimensional ( )
diffusion MR experiments may thus enable the

isolation of restriction and
exchange, though challenges remain in adapting such methods to high-field
scanners.
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Fig. 1: Visualization of signal regimes.  (A) The smallest of three length scales  determines the regime. (B) Regimes when .  is a representative PDF. The motionally

averaged sub-ensemble decays with characteristic . (C) Regimes when . We conjecture that exchange with first-order rate  occurs between free and non-Gaussian sub-ensembles. Note, for 

, little localized signal is expected.

Fig 2: Description of acquisition scheme. (A) Parameters are obtained in two
steps. In the first step,  is measured at
various  (whilst satisfying ) at  at or near zero to probe restriction.

Signals
are fit by non-linear least squares to yield . (B) In the second step,  is varied and  is fixed to probe exchange. Calculating  and fitting to Eq. (3) yields . Note, the steady-state

exchange fraction at long  should agree with .
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Fig 3: Pulse sequences. Static
gradient DEXSY (SG-DEXSY) and static gradient double spin echo (SG-SE-SE) pulse sequences implemented on a PM-10 NMR
MOUSE single-sided system.

Fig. 4: Curvature along  for  near 0 measured on a viable ex
vivo neonatal mouse spinal cord. (A)  for the SG-DEXSY ( ) and SG-SE-SE pulse sequences
at . Error

bars  SD. (B) , measured as the difference between the endpoint(s) and the
minimum, plotted vs. .  is consistent across
sequences. Exemplar plots of Eq. (6) using 

are shown. Fitting yields .
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Fig 5: Acquisition scheme tested on data from fixed spinal cord. (A)  measured using SG-DEXSY ( ). Error bars  SD. Truncated fit to Eq. (3) (red) compared to fit using
all  values

(blue). The truncated fit yields the parameters shown. (B)  at various . (C)  calculated from (B), fixing  and using data in (A) for the  term in Eq. (3). Fitting yields .

The steady-state fraction
agrees with  from (A).
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