The effects of cross-sectional asymmetry and anisotropy of the pore space on double-PFG MR signal
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INTRODUCTION 180 180

The double pulsed field gradient (double-PFG) MR sequence (Fig. 1) is a promising diffusion

MR method that could be useful in probing restricted geometries using low to moderate gradient 0

strengths. To utilize this technique, one should understand how the double-PFG signal is G, G, I'(:I [q_
influenced by pore morphology. Several theoretical [1,2] and numerical [3] studies have been ]

performed where the compartments were taken to have simple shapes such as spherical, M——A—pi— e A —>

cylindrical, and ellipsoidal. All these shapes have one common feature: they are symmetric about ~Figure 1. The double-PFG MR pulse sequence involves
their center of gravity two pairs of gradient vectors where the time delay
’ between the two pairs is called the mixing time, ¢

m*

The main goal of this study is to understand the effect of pore asymmetry on the double-PFG

signal. This is important because in white-matter, the axons are typically modeled as cylinders

with perfectly circular cross sections. To understand the effects of any anisotropy and asymmetry ot Ot.\ G
in the cross sections, we consider ensembles of infinitely long hollow compartments whose cross AG \0‘ Z
sections are defined by circular sectors as shown in Figure 2. The size of the sectors is

S
determined by the radius a, and the angle o, where the case 0=2n corresponds to the case of” o Jo o IU. 7}
circular cylinders. The gradients are assumed to be applied on the plane of these sectors, where | ’ - G,
the angle between them is denoted by . o | o8 o
- oy
THEORY and RESULTS

. . ) . o . Figure 2. The specimen considered in this study
Using an analysis similar to that in [2], we obtained explicit expressions for the double-PFG includes a distribution of parallel tubes with
signal in the narrow pulse and long diffusion time (A) regime for this specimen. The expression randomly oriented asymmetric cross sections,
for long mixing time (Dotm>>a2, where Dy is the bulk diffusivity), is given by where each compartment's cross section is a sector
1 512 of a circle defined by the angle a. The two gradients
sin® {rt,/Q)) + (rga)* [— - 5 sin’(a/2) of the double-PFG sequence are applied on the same
S 6 45a plane with the sectors.
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while the signal at vanishing mixing times is L Trumgunn . _ st a
. 32 o 120"
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where g=(21) 'v8G with G=|G,|=|G,|. =
a=30"
It is clear from the first equation that a (cos 2y) factor emerges, which is responsible for the 0.85[ a=270°
characteristic curves in the presence of compartment shape anisotropy. Moreover, in the case of T e T T
full circles, i.e., 0=2m, this factor vanishes as the cross sections are isotropic. Figure 3 shows the T Y
long mixing time curves for different values of a. 0.80 > ‘ g
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The second equation reveals the (2+cos ) factor, which is responsible for the bell-shaped ¥ (degrees)

functions in the E vs. v plots at #,=0, characteristic of the presence of microscopic anisotropy, Figure 3. The double-PFG signal intensity plotted
which is introduced by the boundaries restricting diffusion. As expected, this term prevails even against the angle between the two gradients for
at o=2m. varying values of « .

The expression for the short mixing time regime has similar qualitative features with that for

symmetric pore shapes. Therefore, one may be tempted to assume a circular pore shape if any 1.0
data revealing compartment shape anisotropy is absent. In this case, one can talk about an
“apparent” compartment size that is attainable from such an analysis. Figure 4 shows this 0.1
apparent pore size against an “expected” pore size, ae,q,Za((x/(Zn))”2 , which is the radius of a g o6l
circle whose area is equal to the area of the sector considered. Note that this quantity is ~
proportional to the square root of a. It is clear that the error introduced by the assumption of a ég o4l
circular cross section is relatively small (<10%) for a very large range of o values. :
02F

CONCLUSION
A wedge-shaped geometry for the cross section of a cylindrical pore was considered to assess the 0.0 . . . '
effects of any anisotropy and asymmetry in the cross sections. The findings suggest that a much 0.0 02 0.4 0.6 0.8 10
simpler model of cylinders with isotropic cross sections can be used in representing axons. Ap / @

Figure 4. The pore radius observed under the
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