INTRODUCTION

- Conventional MRI has limited biological specificity to the subvoxel composition of tissues
- Relaxation spectroscopic (RS) MRI methods map distributions of relaxation parameters like T1, T2, and mean diffusivities (MD), in microscopic water pools in vivo^{1-3}
- Correlation-spectroscopic (CS) MRI methods further improve specificity^{4-6} by assessing how relaxation parameters co-vary in tissue microenvironments
- We design and evaluate a pulse sequence with integrated inversion recovery (IR)^{1} and isotropic diffusion encoding (IDE)^{3} preparations and derive maps of subvoxel T1-MD spectra in healthy volunteers

METHODS

- The sequence in Fig. 1 allows the efficient interleaved multisoilce acquisition IR-IDE MRIs with a wide range of joint T1 and MD weightings, by independently controlling the (TI,TR) and b-value parameters, respectively
- Assuming slow exchange between microscopic water pools and an adiabatic inversion efficiency\(^1\), \(\eta\), we can derive the correlation spectrum of subvoxel R\(_g\)=1/T1, and MD properties, \(\rho(\text{R}_g, \text{MD})\), from the net signal attenuation in a repeated IR experiment:

\[
S_0(b,T1,TR) = \int_0^\infty \left(1 - e^{-T1\phi(T1,\text{TR})} + e^{-T1\phi(T1,\text{TR})}e^{-b\phi(D,\text{TR})}dD\right)\rho(\text{R}_g, \text{MD})d\text{R}_g
\]

- We conducted Monte Carlo simulations, and CS-MRI experiments in a polymer diffusion phantom\(^8\) and three healthy volunteers using 16 diffusion weightings \((b=0.05-3.6\text{ms}/\mu\text{m}^2)\) and 19 T1-weightings \((\text{TI}=50-5000\text{ms}, \text{including no-IR}), \text{TE}=98\text{ms}, \text{FOV}=22\text{cm}, 2.5\text{mm in-plane resolution}, 5\text{mm slice thickness}\)

Acknowledgements: This work was supported by the NIH BRAIN Initiative grants R24-MH-109068-01 and U01-EB-026996, the Intramural Research Program (IRP) of the NICHD within the NIH, and the CNRM under the auspices of the HJF, grants #309698-4.01-65310, #308049-8.01-60855, CNRM-89-9921. The opinions expressed herein are those of the authors and not necessarily representative of those of the Uniformed Services University of the Health Sciences (USUHS), the Department of Defense (DoD), VA, NIH or any other US government agency, or the Henry M. Jackson Foundation

RESULTS

- Due to the long TE needed to accommodate the diffusion gradients, the estimated T3-MD spectra (Fig. 3) are likely T2-weighted (Fig. 4)
- Marginal distributions derived from T1-MD spectra (Fig. 3) are consistent with previous 1D RS-MRI studies in healthy volunteers\(^1\)
- The two WM components (Figs. 3, 4) may reflect effects from magnetization transfer\(^7\) and chemical exchange
- The general signal representation in T1-MD CS-MRI may be able to characterize healthy and diseased tissues with arbitrary subvoxel heterogeneities
- Mapping the subvoxel landscape of T1-MD properties may improve biological specificity in the early detection of neurodegenerative diseases, neuroinflammation, cancer, brain injury, and ischemic stroke

DISCUSSION

References:

Alexandru V. Avram, Ph.D.
alexandru.avram@nih.gov