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Introduction: Population and longitudinal analyses using Diffusion Tensor Imaging (DTI) data have become feasible over the past decade with  
advanced sequences and sophisticated mathematical tools. These studies make use of some form of elastic tensor field registration framework to  
derive a population average brain and the deviation modes. These registration algorithms need to employ a specialized tensor similarity metric [1,2] 
and an tensor interpolation method [3]. Previously proposed metrics directly use tensor-derived information and disregard the diffusion weighted data  
once tensor fitting has been performed. In this work, we propose a new, analytical tensor similarity metric that not only  inherently considers tensor 
directionality and shape but that  also uses the entire experimental  design information to infer the uncertainty  in the  computed tensors. 

Materials and Methods: 
Tensor covariance: In this work, we do not consider diffusion tensors as deterministic quantities but rather random variables, which are functions of 
another set of random variables, i.e. the diffusion weighted measurements. The function is the non-linear tensor fitting function, which can be 
expressed as:  where  represents the vectorized diffusion tensor, si  is the measured diffusion signal 
corrupted with noise and W the experimental design matrix as in [4]. The shape of this function, its Hessian matrix, at the optimum solution γ ̂   is an 
indicator of the robustness of the computed diffusion tensor where, a flat shape indicates that a large range of diffusion tensors yield the same 
optimum function value. Koay et al. [4] showed using error propagation techniques that the invariant Hessian of this function can be computed with 

    where  S and Ŝ are diagonal matrices of observed and estimated signals respectively and R= S -Ŝ . The variance 
covariance matrix of the diffusion tensor components can then be computed as with σ2 

DW representing the noise in DWIs. 

Tensor similarity metric: With the diffusion tensors regarded as normally distributed random variables, one can employ a distribution similarity  
function as tensor similarity metric. We model  the overall tensor field similarity metric  F between a fixed DTI image  If and a moving DTI image Im: 

In Equation 1, p represents the voxel indices, Ω the image domain, γf signifies γf (p), the diffusion tensor on the fixed image at location p; similarly Σf 
is Σf (p) the tensor covariance matrix at the same location, and Θ the transformation parameters. For the moving image the variables represent the 
interpolated versions, i.e. Σm corresponds to Σm(T(p, Θ)), where the interpolation of the matrices was performed through a continuous  B-splines 
approximation [5]. wp  represents a voxel error weighting function based on the tissue type. 

Dimensionality Reduction. With a 6 dimensional vector representing the independent diffusion tensor components and 
21 dimensions for the 6x6 tensor covariance matrix, this approach suffers from curse of dimensionality and slow 
convergence speed. However, one can note that the form of the covariance matrix depends on the experimental design. 
As shown in [6], with dense sampling of the unit icosahedrons with diffusion gradients, this covariance matrix should 
converge to the isotropic design matrix form of Table 1with 2 variables. Therefore, the full diffusion tensor covariance 
matrices are projected onto this form and the variables λ and μ derive the distribution. 

Table 1. Isotropic design matrix 

Data and Experiments. Data from six healthy subjects were acquired with 10 b=0 s/mm2 and 62 b=1000s/mm2 volumes. Matrix sizes for all images  
were 128x157 with 114 axial slices and 1.5mm3  isotropic voxel resolution. Five DT images from the dataset were registered to the first image with  
rigid transform, followed by  affine transform and deformable B-Splines transform with a 20x20x20 grid size. Voxelwise standard deviations of  
tensor derived quantities were  employed to assess registration quality.  

Results: Figure 1 displays the output of the registration algorithm. The metric 
proves to perform well on white matter regions, as can be observed from the 
similarity of the images in the first and third columns. The difference image of 
the registered moving image and the fixed image is displayed on the fourth 
column. This difference image does not contain any particular structure or tissue 
dependent characteristics. A similar behavior can be observed in Figure 2, which 
displays the voxelwise standard  deviation of FA values over six subjects. 

Figure 1. Registration outputs. Fixed DT image is registered to the moving image.  
The output of the registration is displayed in the 3rd column.  The FA maps  are  
computed after the tensor registration process.  

Figure 2. Voxelwise std of 
FA over  six subjects. 

Discussions: In this work, we proposed a diffusion tensor similarity metric for  
tensor field registration for population or  longitudinal analysis. This metric is  
particularly suitable for situations with high uncertainty including images with 
low SNR. Additionally, for DTI  data acquired with different number of gradients 
or different gradient orientations, such as multi-center population studies proposed  
metric provides a convenient approach to deal with the bias introduced  the to the 
statistics by the experimental design. 
The proposed metric outputs a larger value for the same set of two diffusion tensors with increasing certainty  and the 
optimization procedure employed by registration prefers to minimize the errors in these high certainty regions over 
uncertainty regions. This is an important property for images with spatially varying SNR and as a future work, we will  
investigate this behavior with synthetic phantoms  and with images acquired with parallel imaging.  
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