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INTRODUCTION  MR signals are  complex numbers where the real and  imaginary  components are independently Gaussian  distributed [1]. The  phase  of the complex  
MRI signal is  highly sensitive to  many experimental  factors, e.g., see [1,2], and as such, the  magnitude  of the complex MR signal is used instead in quantitative studies.  
Although several techniques have  been proposed to correct  the phase error  [2], the magnitude of the complex MR  signal  (hereafter,  magnitudeMR signal) remains the  
most  commonly  used  measure in MRI. While the  magnitude  MR signal is  not affected by  the  phase error, it  is  not an  optimal  estimate of  the underlying signal  intensity  
when the  signal-to-noise ratio is  low [1] because  magnitude  MR signals follow a  Rician  distribution [3] rather than a Gaussian  distribution. Although several correction  
methods have been p roposed [1,3-6] to address the noise-induced bias in  magnitude data, these  methods do not  produce corrected  data that are Gaussia n distributed.  
Here, we present  a  scheme  to remove  the noise-induced bias  in noisy magnitude MR  signals  by making noisy Rician signals Gaussian-distributed.   
METHODS  A  simple exa mple  illustrates the idea  behind the proposed framework: suppose  the noisy magnitude signals  are drawn from  a family of Rician distributions  
all  of  which are characterized by  different location  parameters but  with the  same scale  parameter (e.g.,  diffusion-weighted signal  as  a function of  b-value or fMRI  signal  
as  a  function of  time). The proposed framework  attempts  to  transform the noisy magnitude signals such  that  each of  the noisy transformed signals may be thought  of as  
if it  were  drawn from a Gaussian distribution with different  mea n but the sa me sta ndard deviation.  There are three stages in the  proposed scheme. First, a data  
smoothing  method (one, two, or higher-dimensional  methods) is  used to  obtain the average  values  of the  noisy  magnitude signals (a penalized spline  model [7] is used  
in  this work). The degree of  smoothness is  selected  based on  the method of generalized cross-validation  [8]. Second, a  novel  iterative method, different  from, but  
motivated  by [6], is employed  to take both an estimate  of the average  value  of a  noisy  magnitude signal and an  estimate  of the  standar d deviation of  the  Gaussia n noise ,  
obtained from the image background [1], to an estimate  of the average  value  of the  underlying signal intensity. Third, the corresponding  noisy Gaussian signal  of each 
of the  noisy  magnitude  signals is found through a composition of the  inverse cumulative  probability  function  of a Gaussian random variable and the  cumulative  
probability function of  a  Rician random  variable.  The third stage is  exactly a Gaussian random  number  generator if the  input  data are  Rician-distributed.   
RESULTS  We  illustrate the perfor mance of our  approach on an excised rat hippocampus data set  acquired  in  a  14.1T narrow-bore  spectrometer with  a pulsed gradient  
stimulated echo pulse  sequence. The  imaging parameters were: TE=12.6ms, TR=1000ms, resolution=(78x78x500) m3 μ , matrix  size=(64x64x3), number of  
repetitions=4, diffusion gradient pulse duration (δ)=2ms, and diffusion gr adient separation (Δ)=24.54ms. The data  set contains  a  total of  33 images with different  
diffusion  gradient strengths increasing from 0 to 2935mT/m  in steps of 91.75mT/m. One  diffusion  weighted  image is shown  in Figure  1A. Two neighboring pixels  
indicated with  a  red square were  selected for further  analyses. The noisy magnitude  signals of each of the pixels  as  a  function  of  b-value are shown in Figs. 1B-1C as  
red dots. The red curve in each of  the  panels is  obtained through a least squares fit of a bi-exponential  function to t he  noisy  magnitude signals. We  applied the proposed 
scheme  on the  noisy  magnitude signals (red  dots); the resultant  or  transformed signals are  displayed as blue  dots in Figs. 1B-1C. The  blue curve  in each of  the panels is  
obtained through a least square fit  of a bi-exponential  function to the  noisy transformed signals (blue  dots) based  on the  proposed  framework. Note that the  penalized 
spline  with a truncated  polynomial basis of degree 4 and with  4 knots was used in  this example. The estimated Gaussian  noise standard deviation  was 0.88. If both the  
estimated  Gaussian noise SD and each  of the blue  curves are assumed to be the  ground truth  values then the  expected  value (or the first  moment) of  a  Rician distribution  
as a function of  b-values can be computed and is shown in dark gray; these expected values are in good agreement  with the red curve, which is an indication that the  
blue curve  is a  good approximation of the  underlying  signal intensities. Note  that the increase in  variability in  the transformed signals at low signal-to-noise ratio  is  
theoretically known and is not unexpected [6].  

Fig. 1.    (A) A diffusion-weighted image of  a hippocampus with a  red square  indicating two neighboring
pixels selected  for further analyses. The  data and results are shown in (B) and (C).  In  each of  the figures 
(B and C) above, the red  points are the  noisy  magnitude signals and  the blue points are the corrected  
signals obtained  through the  application of the proposed scheme on the  red points. Each  of the red curves  
is a smoothed curve  obtained through a bi-exponential fitting  to the noisy magnitude  signals while each  of  
the blue curves  is  a  smoothed curve obtained through a  bi-exponential  fitting to  the transfor med noisy  
signals obtained  through the proposed scheme.   

DISCUSSION & CONCLUSION  The proposed scheme is general and is  not restricted to  diffusion MRI. It  can be used in  fMRI and  other quantitative MRI  methods  
by selecting different  smoothing models. For example, the  
proposed method can  be used to correct  the noise-induced 
bias  in high  angular  resolution diffusion MRI or diffusion  
tensor  data by using the spherical  harmonic spline  model  
[11]  in the first stage of  the proposed scheme. The  
proposed scheme is  the first method  capable of obtaining  
corrected  data that are  distributed evenly in both the 
positive and negative axes  when the  signal-to-noise ratio  is  
very close  to zero, which is  a very important but simple  
criterion  for testing  the accuracy  or lack thereof  of a 
correction scheme. We should point  out that  none  of the  
previously  published  methods [1,3-6] satisfies this
criterion because these  methods cannot  produce corrected 
data that have negative values. It  is important  to note that  
the transformed signals are  of interest here rather than the  
Rician signals because the transfor med signals are 
Gaussian-distributed and are  generally  more amenable  to statistical analysis. As is  well  known  in quantitative MRI,  many anatomically  or physiologically relevant   
parameters are  usually estimated from  models assuming Gaussian-distributed signals. To conclude, the  proposed scheme  is a  practical and effective  method for   
removing the  noise-induced bias in noisy magnitude MR signals. The  present approach is a  major advance in facilitating and improving all subsequent  data analysis and  
processing steps in a quantitative MRI  pipeline [9].   
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