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INTRODUCTION  Data analysis in  MRI  is sophisticated and c an be thought  of as a “pipeline”  of  closely c onnected  
processing and  modeling steps. Because  noise in MRI  data affects all subsequent steps in this  pipeline, e.g., from  noise  
reduction and image registration t o p arametric tensor estimation [1] and uncertainty assessment [2],  accurate  noise  
assessment  has an important role in MRI studies. Noise  assessment in MRI  usually means the estimation of  noise  variance  
(or  standard deviation (SD))  alone  [3-8].  Here, we will demonstrate that  (I)  the  identification of noise, which has not  
received much attention in MRI  literature, is as important as—if  not  more important than—the estimation of  noise standard 
deviation (SD), (II) the identification  of  noise and  the estimation  of  noise  SD  can be  combined into a single coherent  
framework  of noise assessment, and (III) this framework can be  made self-consistent, that is, it can be turned into a fixed  
point  (iterative) procedure. To this end, we propose  a novel  approach to simultaneously  identify noise  and estimate the  
noise  standard deviation from  a commonly used data structure  (see  Fig.  1) in  MRI.    
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Fig. 1.  The proposed  technique  is  
specifically designed to ta ke  a dva nta ge 
of the data structure shown above.  
Many MRI protocols produce this  type 
of data structure; notably, fMRI and 
diffusion MRI.  

METHODS  It is known that  magnitude MR  signals,  m, obtained from an N-receiver-coil  MRI system  [9] follow a  
nonCentral  Chi distribution of  2N degrees of freedom [8,10] and the PDF  of  noise in m agnitude MR images  can be  derived  
from the  nonCentral Chi  distribution.  By m aking a  change  of  variables in the PDF  of  noise, it can be shown t hat the  new  
variable  follows a  particular type  of the Gamma PDF, i.e., Gamma(N,1) [11]. Due to the reproductive  property of  the  
Gamma  distribution [12], the arithmetic  mean, denoted by  s, of  K independent  measurements  of the new  variable  is again a  
Gamma  random variable of  a different type, i.e., G amma(NK,1/K). The  identification of noise is  carried out  
probabilistically by specifying t he lower and upper  threshold v alues (respectively, λ−( α, N, K) and  λ+( α, N, K) )  of s for a  
given pr obability level  α, which c an be computed readily from the cumulative  distribution f unction (CDF) of  s. The  
estimation of  the standard de viation of Gaussian noi se is based the  median  method, which can be  derived by equating 
μ2 /(2σ2 ) = λ(1/2, N, 1)  and solving for  σ in ter ms of  μ and λ(1/2, N, 1); na mely,  σ = μ/√(2  λ(1/2,  N,  1)). Note that λ(1/2, N, 
1)  ≡  λ−( α, N, 1) =  λ+( α, N, 1)  when α=1/2, μ is the  median  of the  magnitude  signals and  σ is the standard  deviation  of the  
Gaussian  noise. Note also that if  N=1, which is the  case  for  Rayleigh-distributed data, we have  an  analytical form for  the  
standard deviation of  the  Gaussian noise, i.e., σ = μ/√(2ln2). The proposed method incorporates  both  the identification  and  
estimation steps in a  highly efficient a nd iterative fra me wor k,  which is best  described in a step-by-step ma nner a s deta iled  
in Fig. 2 where  mijk are the noisy  magnitude signals mentioned in Fig. 1. The  proposed m ethod can be  made automatic by a  
systematic search  for a good initial estimate  of  σ. This systematic search  begins by finding an upper  bound,  M, of  σ. Here, 
M  is estimated from the whole volumetric data  shown in Fig. 1  through the  median m ethod where  μ is taken  to be the  
sample  median of the whole volumetric data. Next, t he  interval from 0 to  M is subdivided t o ge nerate a set  of  points,  
Φ = {M / l, 2M / l,L, (l −1)M / l, M}  where l  is some  positive integer, say 100. Each poi nt in  Φ  then  serves as  
an  initial  solution. The best  initial  solution is  the one  that  produces  the highest number of positive identifications.  

Fig. 2. The  algorithm of  the proposed 
technique.  
Step 0: Initialize Wand n. 

RESULTS The proposed  technique was tested with  a set  of human brain data  acquired on a  1.5 Tesla  scanner  (GE Medical  
Systems, Milwaukee,  WI) with  an  8-channel phased  array coil, i.e.,  N=8, using  a single-shot spin-echo EPI sequence with  
the  following parameters: FOV  of 24cm x 24cm, 60 slices  without  gaps and  with a slice thickness of 2.5mm, an image  
matrix of  96x96. Each diffusion weighted  image dataset consisted of  2 ( b=0 s/ mm2)  images and 12 (b=1100 s/mm2) images  
with different gradient directions so  that   K=14 at  each slice location, see left panel of  Fig.  3. If we set  α to 0.1 , we  have  
λ−=6.798 and  λ+=9.282. For this  particular slice location, the initial estimate  of  σ  was found to be  0.0106 through the  
automatic search method with  l=50. The final  estimate of  0.0104 was obtained in  13 iterations in less than  a  second. Those  
regions that are classified as  containing noi se-only measurements are shown in  white  in the right  panel  of  Fig. 3. In F ig.3,  
the histogram of noise was generated from  the noise  array produced  by the proposed m ethod  and the probability density  
function with  N=8 was generated from  the estimated standard deviation of  the  Gaussian noise.  

Fig. 3. A diffusion-weighted  image  (left  
panel). A  binary m ask indicating noise-
only pixels  in white  (right panel). The  
proposed method was applied to all 14 
images (2 non di ffusion-weighted + 12 
diffusion-weighted images).  The  
histogra m of  noise  was generated from 
the noise  array  produced by  the proposed  
method and  the pr obability density  
function with  N=8  was generated from 
the estimated sta ndar d devia tion of  the  
Gaussian noise.  

DISCUSSION & CONCLUSION  The  proposed  method takes advantage  of the  multiplicity of  the images to increase the  
discriminative power  of  the  identification of noise. The proposed method is general  and  can  be  adapted  to other  imaging 
sciences by  using a  different PDF and CDF  of interest. An important application  of this  method is  the assessment  of  noise  
in  the  brain  region. Specifically, it can  be used to evaluate  the quality of  images  acquired using fMRI or high  angular  
resolution di ffusion i maging (HARDI) techniques [13]. In brief, it is shown that it is  useful and logical to c ombine both the  
identification of noise  and the  estimation of noise variance  into  a  single coherent framework of noise  assessment.   
REFERENCES  [1] Basser  et al. JMR  1994;103:247-254.  [2] Anderson AW. MRM 2001;46:1174-1188.  [3] Edelstein et al. Med Phys 1984;11:180-185.  [4]  
Henkelman Med P hys 1985;12:232-233.  [5] Bernstein et  al. Med Phys 1989;16:813-817.  [6] Chang et al. SPIE  2005;5747:1136-1142.  [7] Sijbers  et al.  PMB  
2007;52:1335-1348.  [8] Constantinides et al. MRM 1997;38:852-857. [9]  Roemer et al. MRM 1990;16:192-225. [10] Koay   et al. JMR 2006;179:317-322. [11] Casella  
et al. Statistical inference.  2002. [12] Rao C R. Linear statistical  inference and its applications. 1973. [13]  Tuch DS et al. ISMRM 1999;  p 321.  

4691 




