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Introduction: 
Monte Carlo (1) and Bootstrap (2) methods provide powerful statistical tools for determining the effects of background noise in diffusion 
weighted imaging (DWI) data on DTI-derived parameters, and for optimizing the design of DTI experiments. While these empirical methods do not 
provide analytical relationships between the variance of the distribution of noise in the DWI data and the variance of DTI-derived parameters, some 
progress has been made in this area: Skare et al. employed error propagation analysis to determine how noise in DWI data affects the uncertainty in the 
estimated ADCs (3) and in diffusion anisotropy measures (4). Matrix perturbation methods have also been used to propagate errors in estimated DTs 
themselves to determine the uncertainty in various quantities derived from the DT, such as its eigenvalues and eigenvectors (5,6), and its Trace (6). 
Analytic error propagation formulas to estimate uncertainties in DTI-derived quantities, such as the variation in the direction of the largest principal 
diffusivity, due to background noise have been derived elsewhere (7). Here Monte Carlo simulations of DTI experiments (1) are performed to validate 
these formulae, and to determine their applicability over a broad range of experimental design parameters (e.g., SNR, number of diffusion gradient 
directions, number of DWI acquisitions, etc.). 

Analysis:  
Let y = {ln(S1), … , ln(SN)}T, where Si represents the ith measurement in a DTI acquisition, and a = {Dxx, Dyy, Dzz, Dxy, Dxz, Dyz, ln(A0)}T are the DTI model 
parameters. To first order, the log linear model is written as y = Ba + e , where the jth row of B contains b-matrix entries of the jth DWI acquisition 

‒ { xxj ,byyj ,bzzj 2 xyj 2 xzj , byzj ,−1}b , b , b 2 , and e is the error vector. The covariance matrix of e is ( ) 2 2 Σe ii = σ i S i , where u  denotes the expectation of random 

variable u. Measured y data is assumed independent, i.e., (Σe )ij = 0  ∀i ≠ j . The weighted least squares solution is a T ~ − − 1 1 T ~ −1 = (B Σe B) (B Σe )y , with 

covariance matrix for a given by a ( −T ~ 1
Σ ≈ B Σ−1

e B) . Let RΣ RT 
a = Ξ  be the covariance matrix of the parameters rotated onto the principal diffusivity axis. 

Then the root mean square (RMS) estimate of the angle of deviation of the measured principal direction can be approximated by:
3 (Ξ)

 θ 2+i ,2+i RMS = ∑ ,2 
i=2 (d1 − di ) 

where d1, d2 and d3 are the eigenvalues of the true diffusion tensor (7). 

Monte Carlo Methods: 
Monte Carlo simulations were performed to validate the proposed formulae. We simulated cylindrically symmetric anisotropic diffusion tensors with 
diffusivity in the x direction set to 3, 5, and 7 times the diffusivity in the y and z directions. The Trace of the DTs was representative of the Trace in brain 
parenchyma (2100 µm2/sec). A recent study by Jones (8) showed that at least 30 unique sampling orientations are required for rotationally invariant 
statistical properties of the estimated DT-derived quantities. Therefore, we tested the 30 diffusion sampling direction scheme (9) with 35 b-values (5 with 
b=0, and 30 with b=1000 s/mm2). We also tested the same scheme but with 2, 4, and 8 replicates (70, 140, and 280 bvalues). For each pre-defined DT 
we created synthetic DW signal intensity data conforming to the DTI model. Gaussian distributed noise was then added in quadrature to the synthetic 
noisefree signal to achieve various SNRs in the non-DW (b=0) data.  

Results and Discussion: 
Figure 1 shows the computed θRMS using both Monte Carlo (MC) methods and the analytical 
formulae (AF) for various given anisotropic DTs at different SNRs. The uncertainty decreases as 
the anisotropy or SNR increases. The trends in the AF and MC are consistent, but they differ by  
a factor of about 2. Both empirical and analytical methods predict a power law scaling 
relationship: θ ∝SNR−1

RMS  . This result is empirically given by the MC method, but is analytically  
derivable from the formulae given above. Figure 2  shows the estimated θRMS decreases as more 
DWI are used and, again, the trends for the AF and MC are consistent, differing by a factor of 
about 2. Both approaches also predict a power law scaling relationship: θRMS  ∝1/N where N is 
the number of DW replicates.  
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Fig. 1 The root mean square (RMS) of θ, θRMS, computed 
using Monte Carlo (MC) methods and Analytical Formulae 
(AF) for different SNRs with various predefined anisotropic 
diffusion tensors and 35 b-values. 
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Fig. 2  The root mean square (RMS) of  θ, θRMS, computed 
using Monte Carlo (MC) methods and Analytical Formulae  
(AF) for different numbers of replicates. The eigenvalues of  
the predefined cylindrically symmetric DT are in the ratio  
5:1:1. 

Conclusion: 
The analytic error propagation framework complements the empirical MC and Bootstrap 
approaches for estimating variability in DT-MR data. Its utility is in providing functional 
dependences between the uncertainty of DT-derived parameters on various experimental 
parameters, such as the SNR, number of DWI acquisitions, underlying DT, etc. The proposed 
formulae provide a reasonable estimate of uncertainty for  θRMS  to within a factor of 2. Moreover, 
they can easily be generalized for other DT-derived quantities of interest. Finally, they provide a 
way of testing noise sensitivity among different possible experimental designs. 
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