MIC Microscopy Workshop 2022 Mixed Zoom / In-person Seminars

In Person

Please wear a mask, your neighbor may have a medical condition! 35 sqft = 6 ft away from anybody else Please save questions for Q. breaks Questions from in-person audience repeated by speaker for Zoom

Zoom

Mute your microphone Do not talk in your microphone, in-person audience cannot hear you Questions in chat will be relayed <u>to</u> the speaker

Presentation PDFs from MIC staff available on demand Session is being recorded

Microscopy Workshop, Spring 2022 Vincent Schram, Ph.D.

- LIGHT MICROSCOPY 1: TRANSMISSION AND FLUORESCENCE Monday May 9, B35 / GG607, 11 am - 1:30 pm
- LIGHT MICROSCOPY 2: CONFOCAL, 2P AND LIGHT SHEET Tuesday May 10, B35 / GG607, 11 am - 1:30 pm
- LIGHT MICROSCOPY 3: SUPER-RESOLUTION IMAGING Wednesday May 11, B35 / GG607, 11 am - 1:30 pm
- IMAGE ANALYSIS WORKSHOP: IMAGEJ Thursday May 12, B35 / GG607, 9:30 am - 12:30 pm / 1 pm - 4 pm
- **CONFOCAL MICROSCOPY HANDS-ON** Friday May 20, B35 / GD922, 9:30 am - 12:30 pm / 1 pm - 4 pm

SUPER-RESOLUTION IMAGING

Sub-resolution particle imaged as Point Spread Function (PSF)

Gap between light and electron microscopy (10 – 200 nm)

→ <u>TRICKS</u> to increase resolution

BEAT THE RESOLUTION LIMIT...?

Undo optical distortions caused by the microscope:

→ DECONVOLUTION

■ Fit PSF of individual molecules

→ LOCALIZATION MICROSCOPY: PALM, STORM...

Spatial modulation of excitation beam
STRUCTURED ILLUMINATION, LATTICE SIM

■ De-excite molecules at the edge of focal volume → STIMULATED EMISSION DEPLETION (STED)

Close confocal pinhole to 0.2 AU and compensate light losses

→ Zeiss AIRYScan, Nikon SoRa

Principle

Glass (n=1.5) / water (n=1.33) interface:
 → n1. sin α1 = n2. sin α2
 Below 61° → Refraction
 61° → Critical angle
 Above 61° → Reflection

Critical angle: Evanescent wave Thin layer of light, < 200 nm Exponential decay from interface Thickness decays over 1-3 deg.

→ Very localized excitation at glass/water interface
 → No signal from bulk solution
 → Axial resolution only, not xy

→ <u>Highly selective for membrane markers, no background</u>

TIRF - Objective

All commercial TIRF microscopes are objective-based

Minimum of 61° for glass / water TIRF: Numerical aperture = n . (sin α)

 \rightarrow NA at least 1.33 (TIRF = oil only)

→ Oil objectives w/ high NA

Olympus: APON 60xO 1.49 NA Zeiss: Alpha Plan-Apo 63x 1.46NA Nikon: CFI apo 100x 1.49 NA Leica: HCX PL APO 100x/1.47

Edge of FOV = poor chromatic correction
 Adjust TIRF angle and focus for each color

TIRF Launch

■ Laser refocuses at objective back-focal plane → Full-field illumination

Beam collimation → Distance between fiber tip and TIRF lens

Beam angle \rightarrow Fiber / TIRF lens coaxiality

Experimental Considerations

Require high NA oil lens, high-quality #1.5 coverslip, hardware autofocus

Glass / water interface \rightarrow Strongly adherent cells, careful with coating!

200 nm from glass surface → membrane-bound events:

Endo/exo-cytosis, membrane docking, aggregation state, lateral mobility

 To find TIRF angle: Increase angle until image disappears Back up a little
 Focus up and down: image should disappear, or put more angle Short range of TIRF positions, higher angle = thinner layer

Adjust focus & TIRF angle on every location...!

Better to adjust TIRF angle / focus for every color

→ *Suitable for single-molecule imaging*

TIRF Images

Green: PIS organelle & ER tubules Red: STIM1 ER / mb junctions Courtesy of T. Balla, NICHD

00:00:00.000

TIRF TAKE-HOME MESSAGE

Pros:
 Simple, cheap microscope addition
 No dye restrictions
 Extremely low photo-toxicity
 Reference method for membrane attachment

Cons

Require strong cell adhesion, coating may be a problem *Require careful microscope alignment*

Color and location change require adjustments Prone to interference stripes in image (Ilas rotating TIRF)

Reference method to document membrane attachment

DECONVOLUTION

Acquire point scanner images at very tight spacing: 40 nm pixel size, 200 nm z increment (requires precise piezo z stage)

■ Feed image stack to deconvolution software (Hyugens / SVI)
→ Iterative process that reverse optical distortion caused by the optics

Best results when measuring actual PSF from small beads

→ <u>25% resolution improvement, higher signal, very slow</u>

LOCALIZATION MICROSCOPY

Fundamentals

Localization Imaging

Localization Principle

Sub-pixel localization, Localization precision, Localization sequence, Marker density

Localization Microscopy

Fluorescent proteins, PALM microscope, Images, Practical considerations, 3D localization, STORM

LOCALIZATION PRINCIPLE

Single molecule location can be established with 10-20 nm accuracy provided no other molecule present within 0.2 μm

Very low labeling density: single molecule imaging

Separate marker population in time:

Make only a few scattered molecules visible
 Record an image
 Establish their position with nm resolution
 Bleach molecules
 Start again until all molecules imaged

Add each frame = nm-resolved image

- → 10x resolution improvement
- \rightarrow Acquisition times in minutes

Sub-pixel Localization

PSF of single molecule projects as an airy disk on CCD camera

Intensity array fitted with 2D Gaussian

Top of fitted Gaussian = molecule location, <u>sub-pixel accuracy</u>

Localization Precision

Low noise: localization precision inversely proportional to photon count

Magnification: Signal / noise vs. resolution Nyquist: pixel size = half-width

→Localization image = x,y
coordinates + precision

Localization Sequence

PA-mCherry / STIM1 Vincent Schram, Tamas Balla, NICHD

- 1) Fluorophores in dark state
- 2) Few random molecules photo-converted (UV light)
- 3) Molecules imaged
- 4) Localization established
- 5) Molecules bleached (does not affect dark-state fluorphores)
- 6) Repeat

Marker Density

Image definition increases with number of detected molecules:

→<u>Localization imaging limited by</u> <u>labeling density</u>

LOCALIZATION MICROSCOPY Photo Activation Localization Microscopy (PALM) Fluorescent Proteins

Photo-activable: non-fluorescent FP until UV-irradiated

Photo-convertible: fluorescence change upon UV

Photo-switchable: reversible photo-conversion with UV

Protein (Acronym)	Ex (nm)	Em (nm)	N Photons Emitted	Contrast Ratio	Quaternary Structure	Brightness (% of EGFP)	
Photoactivatable Fluorescent Proteins							
PA-GFP (N)	400	515	70	NA	Monomer	8	
PA-GFP (G)	504	517	300	100	Monomer	41	
PA-mCherry (R)	564	595	ND	4000	Monomer	25	
Photoconvertible Fluorescent Proteins							
tdEos (G)	506	516	ND	NA	Tandem Dimer	165	
tdEos (R)	569	581	750	>4000	Tandem Dimer	59	
mEos2 (G)	506	519	ND	NA	Monomer	140	
mEos2 (R)	573	584	500	>2000	Monomer	90	
Photoswitchable Fluorescent Proteins							
Dronpa	503	517	120	<1000	Monomer	240	
Dronpa-3	487	514	ND	ND	Monomer	56	

PALM Microscope

Widefield fluorescence microscope

405 and 488 / 561 direct-coupled lasers or high-power lasers

Additional focusing lens (power)

High-sensitivity EM-CCD

<u>TIRF illumination</u> (low background)

- Lowest mechanical drift:
- → Stable room environment, enclosure
- → Hardware autofocus
- → Stable specimen holder
- → xy drift compensation algorithm

PALM Images

Practical Considerations

20 nm resolution imaging:
 Fab-fragment / small marker

Bright, photostable markers:PA-mCherry, mEOS2, dendra2...

Non-specific sparks (dust / dirt):
 > Etch coverslips (NH₃/H₂O₂)
 > Filter and UV-bleach buffers

Require perfect optics: high-quality #1.5 coverslips

3D Localization

- Cylindrical lens between specimen and EM-CCD
- → Horizontal / vertical distortion when above / below focal point
- **Calibration curve ellipticity vs. z-position** \rightarrow 100 nm Z resolution

Successfully applied to PALM and STORM

Stochastic Optical Reconstruction Microscopy (STORM)

STORM = PALM with chemical dyes

Activator / photoswitcher pairs:
 1)All photoswitchers driven to dark state
 2)Random molecules turned on by irradiating activator

Photoswitchable Activator-Reporter Fluorophore Pairs for STORM Imaging

d-STORM: single
 marker storm with O2
 scavenging reagent

LOCALIZATION IMAGING TAKE-HOME MESSAGE

Pros

Best resolution: 20 nm lateral, 100 nm axial Low-cost equipment Choice of methods and dyes

Cons

Slow, imaging time in minutes Require special dyes No live imaging, no tissue Extensive post-processing Require high mechanical stability

Powerful and wide-spread technique

STRUCTURED ILLUMINATION MICROSCOPY (SIM)

Full-field illumination with diffraction-limited interference pattern

- → Series of images at different phases (slight movement) and rotations
- \rightarrow Fourier transform and image processing improve resolution (100 nm)

3D-SIM

Zeiss Lattice SIM / Elyra 7

Developed by Eric Betzig at HHMI, patented by Zeiss

- → Dot scanning instead of stripes
- \rightarrow 120 um after Fourier transform, "60 nm" after deconvolution (??)
- → Very fast, bundled w/ PALM on Elyra 7

STRUCTURED ILLUMINATION TAKE-HOME MESSAGE

Pros

No specimen or dye requirement

Compatible with live imaging

Significant resolution improvement (100 nm lateral, 300 nm axial)

Cons

Require multiple exposures

Require extensive post-processing

Prone to artifacts

Best resolution improvement for discrete structures (puncti, spines...) Zeiss lattice sheet =niche application

→ Uncertain future due to competing techniques...

STIMULATED EMISSION DEPLETION STED PRINCIPLE

Once excited, fluorescent dye may be forced to re-emit by absorbing a photon of longer wavelength ("depletion beam")

Difference in ground vibration state → "stimulated" photon is red-shifted compared to fluorescence

s ₁	ł	$\tau_{\ell} \approx 1 ns$
	Fluorescence	
Absorption		Stimulated Emission
so 📕		τ _{ub} p l ps

Fluorophore	Εx λ (nm)	STED λ (nm)	Resolution (lateral; nm)		
Synthetic Dyes					
ATTO 425	440	532	70-80		
ATTO 565	532	640	30-40		
ATTO 663	635	750	40		
Alexa Fluor 594	570	700	60		
DyLight 594	570	700	60		
RH 414	554	745	30		
Fluorescent Proteins					
EGFP	490	575	70		
Citrine	490	598	50		
EYFP	490	598	70		

Not all dyes equally susceptible to stimulated emission

Depletion lasers: 592 nm (green dyes) 660 nm (red dyes) 775 nm (far-red dyes)

STED IMPLEMENTATION

3D-STED

Vertical STED variant where depletion laser is shaped in z

Depletion power allocated between 100% lateral to 100% axial resolution enhancement

XZ

XZ

TIME-GATED STED

IC.II

White-light pulsed laser used for imaging

Depletion laser reduces fluorophore lifetime

→Molecules exposed to the depletion beam can be filtered out by applying a time filter after each imaging pulse

 \rightarrow Effectively enhance xy and z resolution

STED Images

Tubulin filaments: confocal vs STED

Best XY Confocal Smallest PSF

Confocal vs STED (xy max) vs STED (z max)

STED TAKE-HOME MESSAGE

Pros:

30 to 80 nm lateral resolution Significant axial resolution enhancement Widely available Potential for high-speed imaging Lower-cost add-ons (Abberior "Steadycon")

Cons:

Limited dye selection, especially endogenous Leica mostly, complex and expensive hardware High photo-damage, live imaging difficult Depletion laser obliterates other channels Very sensitive to choice of dye and sample quality Require deconvolution for best results

→ Important super-resolution technique from Leica

ZEISS AIRY DETECTOR Effect of pinhole size

I AU → Best compromise between sensitivity and resolution

Above 1 AU: x,y resolution constant z resolution down Increase in signal

Below 1 AU : modest increase in x,y res. z resolution constant extreme loss of signal

→ <u>Regular confocal at 0.7 AU: 20% better x,y res., 20% signal loss</u>

→ 0.2 AU: 30% better x,y resolution, 90% signal loss

Confocal pinhole at 1 AU

Confocal pinhole at 1 Airy Unit \rightarrow Detector sees central peak of PSF

Courtesy Elise Shumsky, Carl Zeiss MicroImaging

Confocal pinhole at 0.2 AU

\rightarrow Improve lateral resolution by 30%

→ <u>90% light loss</u>

AIRY DETECTOR

- Hexagonal array of 32 GASP detectors
- Each element = 0.2 AU, total array = 1.25 AU
 - → Image rebuilt by remapping each element to the PSF

Courtesy Elise Shumsky, Carl Zeiss MicroImaging

Implementation

Add-on to Zeiss 800/900 or 880/980 point scanner

Adaptive zoom optics matched to each objective, require "Elyra" high-quality lenses (63x)

32-channel image "re-assigned"
 (PSF rebuilt), combined with deconvolution → 120 nm x,y, 400 nm in z

"FAST" mode: laser elongated in y, reassigned as 4 overlapping PSFs

AIRY DETECTOR TAKE-HOME MESSAGE

Pros

Significant improvement: 120 nm lateral, 400 nm axial Low-cost, add-on to Zeiss point scanner *Widespread availability No dye nor specimen restriction* Compatible with live imaging Airy detector very sensitive at AU = 1 Four-fold "high speed" FAST option

Cons

Oversampling (deconvolution)= higher phototoxicity Slow acquisition, stability issues with tilling "FAST" option no substitute for spinning disk

Modest but easy resolution improvement

Super-resolution Spinning Disk Principle

- SoRa" system from Yokogawa
- Spinning disk with smaller pinholes + additional collection lenses to avoid light losses (50% improvement)
- Additional deconvolution \rightarrow 120 nm in xy, 400 nm in z
- Magnification changer matched to objective

SoRa images

92

SD 50µm

SoRa

2um

Movie at: https://bcove.video/2063eAf

10°162(

SoRa SPINNING DISK TAKE-HOME MESSAGE

Pros

Significant improvement: 120 nm lateral, 400 nm axial <u>No dye nor specimen restriction</u> Spinning disk = suitable for live imaging <u>High speed compared to the Airy</u> <u>Suitable for high-volume imaging</u>

Cons

Full-field illumination = prone to lateral bleed-through Laser exposure on high side

→ <u>Attractive option for high-speed 120 nm</u>

ABBERIOR MINIFLUX

Combination of STED and localization microscopy

- → Emiter activated one at a time
- → Donut-shaped excitation beam raster scan FOV
- → As soon as signal detected, zero in on molecule by putting it in the center (lowest emission)
- \rightarrow 3D variant, sample xyz active stabilizer

Comparative images of Nup96 complexes labelled with Alexa 647. Left: standard confocal mode, right: 2D Minflux mode.

MINIFLUX TAKE-HOME MESSAGE

Pros

True molecular resolution: 1-3 nm in xyz Suitable for fast molecular dynamics in vivo (SPT)

Cons

Slower scan times (localization) Labelling density requirements Limited selection of dyes *Extraordinarily expensive (\$2M*)

→ Bleeding edge, still in development

SUPER-RESOLUTION MICROSCOPY

Membrane only	TIRF: 200 nm z, live OK, low photo-damage, very fast
170 nm	Deconvolution: 170 nm xy, 550 nm z, slow, cheap
	SIM: 100 nm xy, 300 z axial, live OK
	Lattice SIM: faster SIM option
120 nm	AIRY: 120 nm xy, 400 nm z, live OK, slow
	SoRa: 120 nm xy, 400 nm z, very fast, excellent for live and tilling
50 nm	STED: 50-100 nm xy, 200 z, live difficult, special dyes, expensive hardware
20 nm	Localization: 20 nm xy, 100 nm z, special dyes, fixed only, no tissue, very slow
3 nm	Miniflux: 1-3 nm xyz, few dyes, rapid molecular dynamics, complex, enormously costly

→ Methods under active development...

