MIC Microscopy Workshop 2022 Mixed Zoom / In-person Seminars

In Person

Please wear a mask, your neighbor may have a medical condition! 35 sqft = 6 ft away from anybody else Please save questions for Q. breaks Questions from in-person audience repeated by speaker for Zoom

Zoom

Mute your microphone Do not talk in your microphone, in-person audience cannot hear you Questions in chat will be relayed <u>to</u> the speaker

Presentation PDFs from MIC staff available on demand Session is being recorded

Microscopy Workshop, Spring 2022 Vincent Schram, Ph.D.

LIGHT MICROSCOPY 1: TRANSMISSION AND FLUORESCENCE Monday May 9, B35 / GG607, 11 am - 1:30 pm

LIGHT MICROSCOPY 2: CONFOCAL, 2P AND LIGHT SHEET Tuesday May 10, B35 / GG607, 11 am - 1:30 pm

LIGHT MICROSCOPY 3: SUPER-RESOLUTION IMAGING Wednesday May 11, B35 / GG607, 11 am - 1:30 pm

IMAGE ANALYSIS WORKSHOP: IMAGEJ Thursday May 12, B35 / GG607, 9:30 am - 12:30 pm / 1 pm - 4 pm

CONFOCAL MICROSCOPY HANDS-ON
Friday May 20, B35 / GD922, 9:30 am - 12:30 pm / 1 pm - 4 pm

CONFOCAL MICROSCOPY

Confocal Fundamentals

Principle, Core Applications, Rayleigh criterion, Resolution

Point Scanner

Overview, AOTF, Fiber, Detector, Image Formation

Spinning Disk

Overview, Detectors, Pros and cons

Experimental considerations Mode of operation, Field of application, Balance and Optimize

CONFOCAL FUNDAMENTALS Wide-Field microscope

Optical sectioning

Core Applications

High-resolution imaging
 Better spatial resolution
 than widefield without
 fluorescence blur

Collagen Fibers self-assembly E. Makareeva, S. Leikin, NICHD 3D Imaging: z-stack

→ Series of images recorded at different focal planes, reconstructed as a volume in software

Resolution

Lateral resolution = 1.22 . λ / (2 . NA)

0502021		
	Objective/NA	d ₀ (μm)
	0.5x / 0.15	2.2
	10x / 0.30	1.1
	20x / 0.50	0.7
	40x / 0.75	0.45
	40x / 1.30 (oil)	0.26
	63x / 1.40 (oil)	0.24
	100x / 1.30 (oil)	0.26

Axial resolution = 2 . n . \lambda / NA²

→ 0.5 µm at 1.4 NA

Resolution limiting factor = objective NA

POINT SCANNERS

Color selection and light delivery

Solid-state lasers can be cycled in 10 nanosec.

AOTF: Acousto-Opto Tunable Filter Laser line selection and attenuation Very fast, 60% transmission Not compatible with 2-photon

Optical fiber: thin strand of glass
 Smooth Gaussian beam profile
 50% transmission
 Not compatible with 2-photon

Detectors: Photo-Multiplier Tubes

- First photo-electron amplified by dynode chain
- Sensitive but noisy at high gain (cooling helps)
- Small dynamic range at fixed gain
- High performance GaAsP sensitive to photodamage

Image Formation

- Laser beam fill objective back aperture → Diffraction limited spot
- PMT records intensity
- Scanning mirrors move beam to next spot
- Confocal image = intensity map: I = f (x , y)

- → Slow, but fast resonant scanners trade speed for image quality
- → Control over scanned area = custom ROI, photobleaching
- \rightarrow True optical zoom and field rotation (still 0.2 μ m lateral resolution)
- → Simultaneous transmission imaging

Point Scanning Microscopes

Pros:

Low background High sensitivity *Excellent spatial resolution* No lateral bleed-through Compatible with live cells

Cons:

Slow (1-4 sec / frame) Significant photo-damage Requires careful calibrations

Best technology for high-resolution images

SPINNING DISK

Overview

Full field illumination in confocal mode

Manufactured exclusively by Yokogawa. CSU-X1, CSU-W1.

Twin rotating disks→ Microlens array focus light onto

matched pinhole array

→ Pinhole disk rejects out-of plane fluorescence

→ Disk rotation (4 or 10k rpm) averages pinhole pattern

Dichroic between disks projects image onto camera

Detector: EM-CCD or CMOS camera

Electron-multiplied CCD
 Costly
 Relatively slow
 Large pixels
 Old technology

CMOS camera
 Cheaper
 Faster
 Small pixels = large field of view
 As sensitive as CCD
 Low floor-noise versions

Resolution

Fixed pinhole size optimized for 100x 1.2 NA water objective

■ Full-field illumination → prone to lateral bleed-through

Super-resolution ("SoRa") variant: 120 nm in xy, 350 nm in z

Spinning Disk Technology

Pros:

<u>Very fast</u>

Low photo-damage Sensitive Mature CMOS camera technology Modest alignments / calibrations

Cons:

Lower spatial resolution than point scanners Photo-activation requires auxiliary unit High-speed acquisition prone to disk artifacts

Best technology for high-speed, volumetric or highthroughput acquisition

EXPERIMENTAL CONSIDERATIONS

Mode of operation

Confocal microscope:

- → Flat images, multiple colors, z-stacks, or combinations
- → Motorized stage: tile scanning, multiple locations (no immersion)
- → Incubator: long term live imaging
- → Hardware autofocus: required for t > 5 minutes

Field of application

Balancing Variables

Speed, photo-damage and sensitivity mutually exclusive
 Live cells: minimal exposure, allows dark interval
 Point scanner: open pinhole (live cells)

Getting The Most Out Of Your Confocal

Objective cleanliness:

Immersion oil hardens after a few days and diffracts light Point scanner highly sensitive to misalignment

- → Sensitivity, lateral and axial resolution severely compromised...!
- High-quality coverslip, #1 (tissue) or #1.5 (cells / high-res.)
- Match immersion fluid to mounting media (thick tissues)
- Steady artifact on images → close to specimen or detector (shading correction = band-aid, clean it...!)

Highly sensitive = prone to false positive.

Always use controls!

- → No primary w/ secondary for each immuno
- Unstained / WT control
- → Beware of autofluorescence at high gain / high laser

TAKE-HOME MESSAGE

Confocal microscopes = spatial resolution

Pros:

0.2 μ m lateral / 0.6 μ m axial resolution (1.4 NA)

Large choice of dyes

Very sensitive

High speed (spinning disk)

Wide field of applications and specimens (cell, tissue, animals)

Cons:

Optical sectioning sometimes detrimental (3D tracking) Lower efficiency than wide-field More expensive than wide-field

->Best Resolution when clean objective, correct coverslip and oil

MULTIPHOTON MICROSCOPY

Multiphoton Fundamentals

Principle, MP Excitation, Resolution

Two-Photon Microscope

Overview, Light source, Pulse compressor, Non-descanned detectors

Field of Applications

Dyes, Applications, Experimental considerations

MULTIPHOTON FUNDAMENTALS

Principle

Tissues more transparent to infra-red light

->IR excitation penetrates deeper than visible

Fluorophore can be excited by absorption of two photons of half-energy (twice λ):

→ First photon induces highly unstable intermediate state (10⁻¹⁸ sec.)

 \rightarrow Second photon within 10⁻¹⁸ sec.

Full transition Identical de-excitation pathway Same emission wavelength

Multiphoton Excitation

1-photon: Beer-Lambert Law: I(x) = Io e -(ε.I.C)
 Absorption coefficient ε (mole / m²), I = distance, C = concentration

2-photon: I(x) = Io / (1 + ε. I. c. Io)
 Two-Photon Absorption coefficient ε = Cross-section
 Unit = Goppert-Mayer (GM) = 10⁻⁵⁰ cm⁴. s / photon

- → Emission varies with square of excitation intensity ("non-linear" optics)
- \rightarrow Requires 10⁴ to 10⁶ more photons than visible excitation...!
- → 3-photon absorption possible, 10x more light (UV dyes)
- → <u>Highly inefficient process</u>
- Extreme photon density only possible with pulsed laser

Lateral and Axial Resolution

Emission varies with square of excitation intensity (NLO)

- \rightarrow Decays very fast away from the focal point
- → Intrinsically confocal
- → No need for emission pinhole

Higher $\lambda \rightarrow$ lower resolution than visible confocal

TWO-PHOTON MICROSCOPE

Point scanner only, no wide-field / SD 2P

Two-photon Light Source

Ti-Sapphire laser:

Pulsed laser, 100 femtoseconds, 80 MHz →x10⁵ peak energy

CW power = 1-3 watts, instant up to 450 kW

Ti³⁺ in sapphire crystal has broad absorption and emission

- → Tunable laser, 650-720 to 950-1050 nm
- \rightarrow "Mode-locked" operation, no rapid λ change

Pulse Compressor ("Pre-chirper")

Output of Ti:Sa laser not strictly monochromatic $\Delta\lambda$ **= 1 – 5 nm**

Speed of light in media = c / n, and n decreases with higher λ

- → Longer wavelengths travel faster in glass (ultra-fast optics)
- \rightarrow Glass in optical train spread pulse by retarding shorter λ
- Excitation efficiency depends on square of instant photon density...!

Pulse compressor: retard higher λ w/ thicker glass (glass vs. air difference)

Prism translation = retardation adjusted for shortest pulse at specimen = brightest image

→ <u>Always adjust compensation on 2P confocals</u>

Non-Descanned Detector

Ballistic photons: Travel in straight lines, acquired

Non-ballistic photons: Scattered by turbid specimen (or optics)

Non-descanned detector:
 PMT close to specimen
 > Wider aperture than descanned
 > Useable only in 2P (SP filter)
 > Higher efficiency when scattering specimen (deep)
 > No pinhole

Considerable improvement with scattering sample (thick tissue)

IMPLEMENTATION Multiphoton Dyes

2P absorption spectra difficult to establish

■ Wider absorption than visible → Crosstalk

Many fluorescent dyes absorb in 2P mode, but not always efficiently

→ Alexas

→ DAPI, FITC, Rhodamin

→ Most fluorescent proteins: tissues / intra-vital

Blue/Cyan dyes

Alexa 350 (780 nm-800 nm) Hoechst (780 nm-800 nm or 900-1100 nm) DAPI (780-800 nm or 900 nm-1100 nm) CFP (800 nm -900 nm)

Green dyes

Oregon Green (800 nm-860 nm) Alexa 488 (800 nm-830 nm) GFP (840 nm-900 nm) BODIPY (900 -950 nm) FITC (750 nm-800 nm) DiO (780 nm-830 nm)

<u>Yellow Dyes</u> YFP (890 nm-950 nm)

Orange dyes DiA (800 nm-860 nm)

Red dyes

Dil (830-920 nm) Rhodamine B (800 nm-860 nm) Alexa 568 (780 nm-840 nm)

Applications

2P useful only with turbid -i.e. thick- specimen

- → Thick tissue section, fixed (virus injection, transgenic anim...)
- → Do not combine 2P with cleared tissues...!
- → Live tissue section (electrophysiology)
- → Live animal imaging (heavy experiments)

Experimental Considerations

■ Choice of dyes Cross-talk more a problem than in visible Multiple NDDs outfitted with filter cubes →limited filter selection

Pre-chirp adjustment critical (adjust for max. intensity)

■ NDDs very sensitive to ambient light → light-proof enclosure

Live tissue / animal requires paraphernalia (perfusion, heat, gases, etc...)

Photodamage: careful at the surface, ramp power inside tissue (depth correction also useful in visible)

Require IR-optimized objective and optics

TAKE -HOME MESSAGE

Multi-photon is NOT better than visible

- → Similar or worse resolution
- → Inefficient excitation
- → Broad absorption spectrum = crosstalk

Useful only for <u>deep imaging</u>

- → IR light penetrates <u>deeper</u>
- → NDDs collect scattered photons more efficiently
- → Intrinsically confocal: no pinhole = cheaper microscope
- Pulsed IR laser expensive

Drosophilia embryo, Tubulin-stained, FITC

LIGHT SHEET MICROSCOPY

Separate optical paths for excitation and detection

Light sheet illumination

Advantages: Low bleaching, highly efficient Very fast (CMOS camera)

Problems: Limited optical sectioning: 2-10 μ m Limited xy resolution (working distance)

Dense object creates stripes → dual-side or tilted excitation

Clearing method labor-intensive and induce morphology changes

O-ring illumination microscope objective window agarose sample light sheet mediumfilled

detection

chamber

Complex specimen mounting

Zeiss controls crucial patents \rightarrow little competition

Large Specimen: Zeiss Z1

Optical clearing required

Clearing reagent: FocusClear, Clarity, Scale, Cubic... <u>Choice of clearing method critical...!</u>

Specimen mounting: Agarose embedding in syringe Agarose cylinder mounted on xy stage

Stationary imaging plane motorized stage, limited speed

- **5 μm sectioning, 25x lens:**
- → 100-1000 μm: embryo, whole organ (mouse brain), small organism (zebra fish, drosophila...)

Small specimen: di-SPIM

Developed at NIH by Hari Shroff, commercialized by ASI (add-on)
 Symetrical, alternating, dual-side illumination and imaging
 Stationary specimen, optical scanning = very fast
 High vertical, medium x-y resolution = 5 – 100 μm specimen

Example: Drosophila Development

Drosophila melanogaster, Histone - RFP, Philip Keller, HHMI / Janelia Farms

Example: Mouse Embryo

Thy1 EGFP M line mouse w/ prop iodine, O.Efimova, National Research Center, Moscow

TAKE-HOME MESSAGE

Low resolution = large specimen

Require transparent specimen (cleared = fixed)

Optical clearing difficult and induces morphological changes (shrinkage / expansion)

Volume reconstruction CPU and data intensive

Derivatives technologies (di-SPIM, lattice light sheet) offer high spatial resolution, under development

Jight sheet = speed (high-volume acquisition)

