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ABSTRACT  

Atomic force microscopy is an established technique for probing the local elastic properties  

of materials at submicron scales.  In some cases, linear elastic contact theories based on Hertzian 

and adhesive contact mechanics suffice to model the indentation process.  However, at the large  

strains that are common in many nanoindentation experiments, the linear models become invalid.   

A force-indentation relationship based on the  Mooney-Rivlin equation and capable of being 

extended to adhesive behavior  that closely follows the Derjaguin-Muller-Toporov (DMT)  theory  

is presented.  We use this new relationship to fit data from the AFM indentation of highly 

swollen, chemically crosslinked poly(vinyl alcohol) gels, which are known to exhibit rubber  

elastic behavior.   The extracted Young’s moduli agree well with values obtained from  

macroscopic uniaxial compression tests.  

INTRODUCTION  

The well-established field of indentation, including the theories used to model the mechanics  

of contact between the indenter and the probed material, has experienced rapid advancement 

with the advent of instrumented nanoindentation [1,2].   The prevalent nanoindentation 

technologies (atomic force microscopy – AFM, and depth-sensing nanoindentation) permit the  

mechanical probing of surfaces at submicron length scales.  Although linear elastic models based 

on the Hertz theory  [3] can be applied successfully [4], tip-sample interactions (primarily  

adhesion) can cause the indentation behavior to  deviate significantly from that predicted by the 

models.  Adhesive theories, also predicated on linear elasticity, have therefore been developed by 

Johnson et al (JKR theory) [5], Derjaguin  et al (DMT theory) [6], and Maugis (Maugis-Dugdale,  

or MD theory) [7]. 

In nanoindentation, deformation  of the indented material beyond the linear elastic limit can 

be unavoidable depending on the geometry of the  indenter.  Although spherical tips generate 

much smaller stresses and strains than common tapered tips at comparable depths [8], a  

combination of small tip diameter and narrow range of linearity may still limit the  linear  regime  

to indentation depths that fall outside the resolution of the instrument.   Even when  it is  feasible to 

either restrict  the maximum indentation depth or  truncate the dataset, accuracy may be adversely 

affected by signal-to-noise ratios that are typically higher in the vicinity of tip-sample contact 

than at larger indentation depths.  Here, we are interested in the nanoindentation of materials that  

exhibit rubber-like behavior.  These materials can be elastically deformed to large strains, with 

the stress-strain relationship generally adhering to  the Mooney-Rivlin model; at small strains,  the 

relationship is approximately linear.  

In this paper, we make use of an automated algorithm we previously described [4] based on  

Pietrement and Troyon’s empirical formulation of  the MD theory  [9] and present an approximate 



Mooney-Rivlin force-indentation relationship for spherical indenters based on the Hertz and 

DMT theories.  Results of AFM indentation experiments performed on chemically crosslinked 

poly(vinyl alcohol) gels, which have been shown to obey rubber elasticity [10] are also  

presented.  

THEORY 

The JKR and DMT theories for indentation with a spherical tip are applicable to opposite 

extremes of the relationship between material compliance, strength of the tip-sample adhesive 

force, and tip radius [11].  The JKR theory is valid  for relatively compliant materials that adhere  

strongly to tips with large radii whereas the DMT theory applies to the indentation of stiffer  

materials with small tips and weak adhesive interactions.  In the intermediate regime, the  

mechanics can be modeled using the MD theory and its empirical forms  [9,12].  Details of the  

specific theories can be found in the original references [5-7,9,12].  

To formulate an adhesive contact model based on rubber elasticity, we start by defining the  

average indentation stress (�*) and strain (�*) as  

 �* = F / �a 
2 

(1) 

�* = a / R (2) 

where F is  the net indentation force,  a is the contact radius, and  R is the radius of  the spherical 

indenter.  The classical Hertz equation and the DMT theory relating  F to the indentation depth  �  
is  

4ER1/ 2� 3 /  2  

F = Fn =  (3)+ Fad 3(1�� 2)

where � = a 
2
/R and E and  � are Young’s modulus  and Poisson’s ratio of the indented material,  

respectively.  Note that  Fad = 0 in the Hertz theory  and that the  ratio of  �* to  �*  is a constant, as  

expected for linear elastic indentation.   The nonlinear Mooney-Rivlin relationship between stress  

� and the stretch ratio � for an incompressible material can be expressed as [13]  

       � = C1 [� – �-2
] + C2 [1 – �-3

] (4)

where C1 and C2 are constants.  Adopting the convention that �* and  �* are positive for � > 0  

(note that since indentation is predominantly a compressive process, this convention is contrary  

to the standard engineering notation used in  the Mooney-Rivlin equation), Equation (4) can be  

rewritten with  � replaced by -�*  and � by (1  – �*).  Substituting Equations 1 and 2 into the recast 

Equation 4 and assuming that the relationship between a and � at large strain changes negligibly 

from that at small strains  (a = R
1/2�1/2

), the following force-indentation relationship is obtained: 

 

 
 

 

 
	 

 

 
 

 

 
	 

� 5 /  2  � 3R1/ 2� 2 
+ 3R� 3 /  2  R1/ 2� 5 /  2  

+ 3R3 /  2� 3 /  2  � �  
F = �R1/ 2C1 + �R1/ 2C2 

� 3R� 2 

 (5)� 
� � 2R1/ 2�1/ 2 � 

�� 3 /  2  
+ 3R1/ 2� � 3R�1/ 2 

+ R3 /  2  
� + R � 



 

Note that the sum of  C1 and C2 are related to the material properties by 

4 E0C1 C2  (6)
9� (1 �� 2 )

where E0 is the initial Young’s  modulus.  

The applied force and resulting indentation are measured indirectly in the AFM, with the  

former  inferred from the deflection of the cantilever and the latter depending on both cantilever 

deflection and the displacement of the cantilever base.  Hence, conversion of acquired values of  

cantilever deflection (d) and base displacement (z) relies on the identification of the  reference  

points listed in Table I [4].  In the case of adhesion, the applied force is nonzero at the point of  

contact or separation because it must balance the adhesive force; the zero force reference occurs  

at some positive indentation depth.  Once the reference points have been identified, the adhesive  

force is 

 

 Fad = -k(d0 – d1) = 2��R (7)

where k is the spring constant of the cantilever and  �  is the interfacial energy in units of energy  

per unit area [6,9]. 

Table I. Essential reference points and their relation to force and indentation. 

Non-adhesive 

(Hertz) 
Contact: (z0,d0) 

Fn = k(d – d0) 

k: spring constant of 

cantilever 

� = z – z0 – (d – d0) 

Adhesive 

(DMT) 

Contact:   (z0,d0) Fn = k(d – d1) 

Zero force: (z1,d1) � = z – z0 – (d – d0)  

EXPERIMENT 

Poly(vinyl alcohol) of MW (= 70,000 – 100,000)  was obtained from Sigma (St. Louis, MO)  

and dissolved in water at 99  °C to form  a 14% stock solution.  Gels at  polymer concentrations of 

6%  and 12% were  made by crosslinking the polymer  in  aqueous  solution with glutaraldehyde at  

p H ~ 1.5.  The ratio of units of crosslinker  to units of  monomer was maintained  at 1:100.  Gel 

cylinders (1 cm diameter, 1  cm height) and films (> 2  mm thick) were  cast for macroscopic  

displacement-controlled compression testing and AF M  nanoindentation,  respectively.   The  

samples were  swollen to  equilibrium in  water prior to testing.   General pur pose silicon  nitride 

ti ps (Veeco,  Santa Barbara, CA)  with 9.6  μm  polyst yrene or 5.5  μm  glass beads attached were  

used for  the AF M measurements,  performed using  a commercial AF M  (Bioscope I with  

Nanoscope IIIA controller,  Veeco).  The  spring  constant of  the  cantilever was measured by  the  

thermal  tune method while  bead  diameters  were measured from images acquired during  the 

attachment  process.  Accuracy of  the cantilever deflections  was ascertained by measuring the 

sensitivity against a rigid surface prior  to  testing.   A raster  scanning  approach (“force-volume”)  

was ap plied  to automatically  perform  indentations,  ty pically set  to a resolution of 16�16 (256 



total indentations) over an area  of  50�50 μm.  Further details of the procedure  and results of  the 

nanoindentation experiments using  Equation 3  and the empirical Pietrement-Troyon equation 

have been reported elsewhere [4].  Here, we  ap ply  nonlinear  analysis  to  the same datasets and 

compare  the results (extracted values of  Young’s  modulus)  to  those obtained using the linear  

theories.  All  analysis  was conducted using software developed in MATLAB ( Mathworks,  

Natick,  MA) and based on the algorithms described elsewhere [4].  

 

DISCUSSION  

Maugis introduced a nondimensional parameter to  delimit the transition region between the 

opposing JKR and DMT theories.  The empirical forms of the MD theory developed by Carpick 

et al and by Pietrement and Troyon make use of an equivalent parameter,  �, where  � = 1  

corresponds to the JKR case and � = 0 to the DMT theory.   It is  important to note that  Equation 

5 is not valid when � deviates from the DMT limit because the relationship between  �* and �* is  

not linear in the JKR and empirical MD models even at small strains.  In applying Pietrement 

and Troyon’s equation to the indentation of poly(vinyl alcohol) gels, we found the samples to be  

close to the DMT limit of the adhesion spectrum,  with � = 0 in the  majority of cases [4].  Results  

are presented in Table II.  Adhesion was evident only in the retraction strokes, prior to tip-sample  

separation.   The small strain analysis of the AFM  data was performed by truncating the datasets  

at about 15% strain and applying either the Hertz equation (extension stroke) or the Pietrement-

Troyon equation (retraction stroke) [4].  The large strain analysis was performed without  

truncation and fitting Equation 5 with  Fad = 0 (extension stroke) or with Fad determined from the  

identified contact point (retraction stroke).   The gels were assumed to be incompressible (� = 

0.5) in all cases.  The generally good agreement between macroscopic compression and AFM  

indentation can be seen from the summary of results found in Table II.    

Table II.   Young’s moduli from  compression and AFM nanoindentation (mean ± SD).  

% Macro. (kPa) 
Small Strain, Linear Elastic Large Strain, Mooney-Rivlin 

Extend (kPa) Retract (kPa) Extend  (kPa) Retract (kPa) 

6 21.51 ± 0.59 16.55 ± 2.74 19.39 ± 3.26 18.23 ± 2.38 19.51 ± 4.69 

12 115.50 ± 1.86 113.66 ± 6.06 108.98 ± 9.17 115.82 ± 7.21 110.08 ± 13.17 

The Mooney-Rivlin model is derived from a phenomenological treatment of large strain 

elasticity.  Although many refinements to the theory have been formulated [13], the model still 

provides acceptable fits of many sets of experimental data.  We chose it as the basis for modeling  

indentation mechanics because of its relative simplicity.  Figure 1 shows an example of Equation  

5 fit to the extension and retraction portions of  a typical dataset from the indentation of the 6% 

gel.  Also shown are the  resulting fits when the linear elastic equations are applied to a smaller 

range of indentation strain (~15%).  The errors  in the Mooney-Rivlin fits are consistently small 

even to the maximum indentation strain,  indicating  the rubber elastic nature of the deformation.   

Table II shows that similar values of Young’s modulus were obtained from both methods.   

Although not the case in this experiment, errors associated with the linear  models can be 

significantly higher due to greater contribution from noise in the vicinity of the contact point.  It  

is therefore advantageous to apply models that allow inclusion of the full dataset in the analysis.  



Figure 1.   Fits of a sample dataset from indentation of the 6% gel using both linear elastic  

(Equation 3) and Mooney-Rivlin (Equation 5) contact models.   Every fifth point of  the raw data  

is plotted.  Contact points are indicated by solid dots, with coordinates (w0, d0).  For display  

purposes, the curves are shifted apart.  For the small strain analysis, fits are extended beyond the 

imposed strain limit for comparison with the Mooney-Rivlin fits.   The tip extension curve has no  

apparent adhesive interactions while the first release point is taken to be the contact point in the 

retraction curve.   The equation used for each particular fit is indicated along with the strain  

cutoff and the extracted Young’s  modulus.  Right inset shows point-by-point plot of errors  

(difference between predicted d and actual  d) for each fit.   Left  inset shows extension and 

retraction curves plotted on the same scale for comparison.  

The existence of tip-sample adhesion is demonstrated by the conspicuous valley in the d-w 

retraction curve in Figure 1.  It is clear that the adhesive force can be determined independently  

of the contact model applied.   The neutrality of the poly(vinyl alcohol) gels  in our experiments  

prevented divergent adhesive behavior  from point to point.   In samples with highly 

inhomogeneous surface energy profiles, AFM probing can in principle, be employed to map 

changes in the interfacial energy.  

The assumption of a Hertzian contact radius over the range of indentation depths is  

significant to the derivation of the force-indentation relationship represented by Equation 5.   

Numerical analysis of the errors associated with this assumption has yet to be performed.   

However, studies on the indentation of plastic materials may provide some  insight into the  

validity of the assumption.  It has been shown that the contact radius of materials undergoing  

plastic deformation differs from  the Hertzian  form  by a constant factor [14] and the Hertzian 

contact radius was found to extend beyond the yield point of the material [15].  Based on these 

numerical studies of plastic indentation  and the good agreement between the AFM and  



macroscopic compression data, we believe that the assumption for  rubber elastic materials is a 

valid first approximation.  

CONCLUSIONS 

The prevalence of nanoindentation in measuring the local elastic properties of a wide range 

of materials necessitates the development of contact models that accurately  represent various  

material behaviors.  Simple force-indentation relationships are especially desirable for automated 

and high-throughput applications.  The approximate Mooney-Rivlin equation introduced here  

satisfies this requirement and appears capable of modeling the indentation of  rubber-like 

materials, both with and without the influence of  adhesive interactions.   The approach used to  

derive the equation can also be applied to other hyperelastic models (e.g., neo-Hookean and  

polynomial forms).  
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