Genetic epidemiology of early growth-cardiometabolic disease links

Fasil Tekola-Ayele

Earl Stadtman Investigator
Epidemiology Branch, Division of Intramural Population Health Research
Prior to joining NICHD...

2004– Podoconiosis: public health to genetics, back to public health

- **Socio-economic burden**
 - Tekola-Ayele et al. *BMC Med Eth* 2010

- **Develop clinical grading system**

- **Genetics**
 - Tekola-Ayele et al. *NEJM* 2012

- **Public health translation**
2011–2016 genetics of cardiometabolic diseases, population genetics

- **African Genome Variation Project**
 - *co-first author

- **Metabolic syndrome**

- **Type 2 diabetes**
 - Tekola-Ayele et al. *Pharmacogenomics J* 2014
Motivation

The early life period is one of the critical times in health across the life course.

Barker et al. *Ped Perinat Epi* 1992

Bulik-Sullivan et al. *Nature Genetics* 2015
Research program

Goal: genetic mechanisms of early growth variations and links with cardiometabolic outcomes.

- Genetic regulation of fetal growth
 Tekola-Ayele et al. *PLoS Genetics* 2020
 Rahman … Tekola-Ayele *JCEM* 2019
 Tekola-Ayele et al. *Hum Genomics* 2019
 Tekola-Ayele et al. *Scient Reports* 2019
 Ouidir … Tekola-Ayele *J Clin Lipid* 2019
 Tekola-Ayele et al. *BMC Medicine* 2018
 Shrestha … Tekola-Ayele *Front Genetics* 2018
 Shrestha … Tekola-Ayele *Obesity* 2018
 Workalemahu … Tekola-Ayele *Scient Reports* 2017

- Placental genome/aging & fetal growth
 Tekola-Ayele et al. *Clinical Epigenetics* 2020
 Ouidir … Tekola-Ayele *Epigenomics* 2020
 Tekola-Ayele et al. *Aging* 2019
 Workalemahu … Tekola-Ayele *Hypertension* 2019
 Shrestha … Tekola-Ayele *Int J Obesity* 2019
 Workalemahu … Tekola-Ayele *J Dev orig Health Dis* 2019
 Shrestha … Tekola-Ayele *Epigenetics* 2018
The placenta supports pregnancy and undergoes physiologic aging.

Some placentas may show signs of accelerated aging.

Disrupted aging of placenta – based on pathologic & telomerase markers – may lead to pregnancy complications.

(Behnia et al. *Placenta* 2015, 36: 969–973)
Measuring aging “clock” using epigenetic markers

- Accelerated aging leads to functional decline but measuring age acceleration is challenging

- Epigenetic clock is a promising molecular estimator of biological age
 - Epigenetic age predicts chronological age with high accuracy
 - Age acceleration = epigenetic age – chronological age
 - High heritability
 - Predicts cancer, cardiovascular diseases, mortality in adults
 - Early onset preeclampsia

Placental epigenetic aging studies

- Genetic susceptibility, ancestry
- Relations with fetal growth, sex differences
- Maternal factors (e.g., cardiometabolic, psychosocial)
- Molecular biomarkers of placental aging

- Age acceleration can have consequences on fetal growth
- Male fetuses more vulnerable to adverse neonatal outcomes, severe placental histopathological lesions
- Sex differences in placental response to adverse perinatal exposures, and epigenomic/transcriptomic profiles

(Naeye et al. Pediatrics 1971, 902–06)
Hypothesis

Sex-specific associations of placental age acceleration with fetal growth, neonatal anthropometry measures, and risk of low birth weight.

- The NICHD Fetal Growth Studies – Singletons
 - a prospective cohort of 2,802 pregnant women
- Gestational age confirmed by ultrasound
- Fetal growth measured by ultrasound at 5 gestation times & standard neonatal anthropometry
- 301 women provided placental samples at delivery

Placental and maternal DNA profiling

Placenta
(n=301 after QC)
(biopsies in RNALater: 0.5cm x 0.5cm x 0.5cm, below fetal surface, within 1 hr of delivery)

Maternal DNA
(n=2065)

Methylation:
- Infinium Human Methylation450 Beadchip
- Epigenetic age (62 CpGs)

Genotyping:
- HumanOmni2.5 Beadchip
- Fetal genetic ancestry

Genotyping:
- MultiEthnic Genotyping Array (n=2650)
- Maternal genetic ancestry

Age Acceleration = DNA methylation age – gestational age
Characteristics of study participants

<table>
<thead>
<tr>
<th></th>
<th>Female offspring (n=149)</th>
<th>Male offspring (n=152)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maternal age, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td><30 yrs</td>
<td>89 (59.7)</td>
<td>93 (61.2)</td>
</tr>
<tr>
<td>30-35 yrs</td>
<td>44 (29.5)</td>
<td>45 (29.6)</td>
</tr>
<tr>
<td>≥35 yrs</td>
<td>16 (10.7)</td>
<td>14 (9.2)</td>
</tr>
<tr>
<td>Gestational age at delivery, wk</td>
<td>39.6 ± 1.1</td>
<td>39.4 ± 1.2</td>
</tr>
<tr>
<td>Race/ethnicity, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>38 (25.5)</td>
<td>39 (25.7)</td>
</tr>
<tr>
<td>Black</td>
<td>39 (26.2)</td>
<td>33 (21.7)</td>
</tr>
<tr>
<td>Hispanic</td>
<td>53 (35.6)</td>
<td>49 (32.2)</td>
</tr>
<tr>
<td>Asian</td>
<td>19 (12.8)</td>
<td>31 (20.4)</td>
</tr>
<tr>
<td>Low birthweight (%)</td>
<td>4.7%</td>
<td>9.9%</td>
</tr>
</tbody>
</table>
Fetal size differences per 1-week increase in Age Acceleration

<table>
<thead>
<tr>
<th></th>
<th>(95% CI)</th>
<th>P</th>
<th>(95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fetal weight, g</td>
<td>-17.4 (-34.0, -0.8)</td>
<td>0.04</td>
<td>14.5 (0.9, 28.1)</td>
</tr>
<tr>
<td>Head circumference, mm</td>
<td>-0.2 (-0.9, 0.6)</td>
<td>0.68</td>
<td>1.2 (0.5, 1.8)</td>
</tr>
<tr>
<td>Biparietal diameter, mm</td>
<td>-0.2 (-0.4, 0.1)</td>
<td>0.21</td>
<td>0.4 (0.2, 0.6)</td>
</tr>
<tr>
<td>Abdominal circumference, mm</td>
<td>-0.8 (-1.9, 0.3)</td>
<td>0.16</td>
<td>1.3 (0.4, 2.3)</td>
</tr>
<tr>
<td>Humeral length, mm</td>
<td>-0.0 (-0.2, 0.2)</td>
<td>0.85</td>
<td>0.2 (0.1, 0.4)</td>
</tr>
<tr>
<td>Femur length, mm</td>
<td>0.0 (-0.2, 0.2)</td>
<td>0.97</td>
<td>0.2 (0.1, 0.3)</td>
</tr>
</tbody>
</table>

Birth size difference per 1-week increase in Age Acceleration

<table>
<thead>
<tr>
<th></th>
<th>Male neonate</th>
<th>P</th>
<th>Female neonate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Estimate (95% CI)</td>
<td></td>
<td>Estimate (95% CI)</td>
</tr>
<tr>
<td>Birth weight, g</td>
<td>-114.0 (-166.1, -61.9)</td>
<td>3.0e-5</td>
<td>-31.9 (-70.2, 6.4)</td>
</tr>
<tr>
<td>Birth length, cm</td>
<td>-0.4 (-0.7, -0.1)</td>
<td>0.004</td>
<td>-0.3 (-0.5, -0.1)</td>
</tr>
<tr>
<td>Head circumference cm</td>
<td>-0.3 (-0.5, -0.2)</td>
<td>2.7e-5</td>
<td>-0.1 (-0.2, 0.0)</td>
</tr>
</tbody>
</table>

Tekola-Ayele et al. *Aging* 2019
Sex-specific associations differ based on gestational age, head bone vs long bone

Males: inverse association with all growth measures

Females: positive association with head bones throughout gestation, with long bones until end of 2nd trimester

Adjusted for maternal age, pre-pregnancy body mass index, race/ethnicity, marital status, educational status, health insurance ownership, parity, and mode of onset of labor.

Tekola-Ayele et al. *Aging* 2019
Maternal cardiometabolic factors & placental aging

- Blood pressure
- Pre-pregnancy obesity
- Dyslipidemia
- Gestational weight gain

Adjusted for parity, health insurance, mode of onset of labor, marital status, educational status, preeclampsia status, and offspring sex

Workalemahu ...Tekola-Ayele J Dev orig Health Dis 2020
Maternal dyslipidemia & placental aging

- HDL cholesterol
- LDL cholesterol
- Triglycerides
- Total cholesterol

Positive placental age acceleration among women with low HDLc compared to normal HDLc

Shrestha ...Tekola-Ayele Epigenetics 2019
Genetic ancestry & placental aging

Women's genetic ancestry

<table>
<thead>
<tr>
<th>Ancestry</th>
<th>ΔPAA, wk (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>White</td>
<td></td>
</tr>
<tr>
<td>10% higher European ancestry</td>
<td>0.20 (-0.20, 0.60)</td>
</tr>
<tr>
<td>10% higher African ancestry</td>
<td>-0.10 (-0.40, 0.20)</td>
</tr>
<tr>
<td>Hispanic</td>
<td></td>
</tr>
<tr>
<td>10% higher European ancestry</td>
<td>-0.10 (-0.30, 0.10)</td>
</tr>
<tr>
<td>10% higher African ancestry</td>
<td>-0.20 (-0.50, 0.00)</td>
</tr>
<tr>
<td>10% higher Native American ancestry</td>
<td>0.20 (0.02, 0.40)</td>
</tr>
<tr>
<td>Asian</td>
<td></td>
</tr>
<tr>
<td>10% higher East Asian ancestry</td>
<td>-0.20 (-0.40, -0.04)</td>
</tr>
</tbody>
</table>

Offspring genetic ancestry

<table>
<thead>
<tr>
<th>Ancestry</th>
<th>ΔPAA, wk (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>White</td>
<td></td>
</tr>
<tr>
<td>10% higher European ancestry</td>
<td>0.10 (-0.20, 0.40)</td>
</tr>
<tr>
<td>10% higher African ancestry</td>
<td>0.05 (-0.20, 0.30)</td>
</tr>
<tr>
<td>Hispanic</td>
<td></td>
</tr>
<tr>
<td>10% higher European ancestry</td>
<td>-0.20 (-0.40, 0.10)</td>
</tr>
<tr>
<td>10% higher African ancestry</td>
<td>-0.40 (-0.60, -0.20)</td>
</tr>
<tr>
<td>10% higher Native American ancestry</td>
<td>0.30 (0.20, 0.50)</td>
</tr>
<tr>
<td>Asian</td>
<td></td>
</tr>
<tr>
<td>10% higher East Asian ancestry</td>
<td>-0.10 (-0.30, 0.10)</td>
</tr>
</tbody>
</table>
Summary

- Placental epigenetic aging may influence fetal growth trajectories, with distinct responses by sex.

- Maternal dyslipidemia, higher gestational weight gain and genetic ancestry may drive placental aging.

- Placental epigenetic clocks may be potential markers for in-utero exposures that influence pregnancy outcomes.
From GWAS … to regulatory function in placental aging

- Genetic contributions on fetal growth vary by gestational age

Variation in fetal weight explained (%)

Gestational week

wk13 wk20 wk27 wk38

Genetics

Environment (private)

Environment (shared)

Workalemahu … Tekola-Ayele Scient Reports 2017
Trans-ethnic GWAS (White, Black, Hispanic, Asian)

- $ITPR1$ locus associated with lower fetal weight at 27-32 wk

Tekola-Ayele et al. *PLOS Genetics* 2020
From GWAS … to regulatory function in placental aging
From GWAS … to regulatory function in placental aging

Function

- induces calcium release from intracellular membranes
- mice itpr1/- led to fetal growth retardation, decreased expression in placenta
- decreased expression in aged skeletal muscle

Fosket et al. *Physiol Rev* 2007, 87:593–58
Hypothesis
Decreased expression of *ITPR1* in placenta may lead to accelerated aging of the tissue, potentially linking the effect of the SNP on lower birthweight.

Tekola-Ayele et al. *PLOS Genetics* 2020
Summary

- Genetic influences on fetal growth vary at different gestational weeks

- The \textit{ITPR1} genetic locus may reduce fetal weight though a functional impact on placental aging – identifying the \textit{in-utero} mechanism can inform molecular and clinical intervention targets
Maternal cardiometabolic status \rightarrow birth outcomes \rightarrow future risk of CVD

- Maternal effect
- Fetal genetic effect
- Shared genes
- Fetal drive
- Environment

Chen et al. PLOS Med 2020
Maternal cardiometabolic factors and birthweight in relation to placental methylome/transcriptome

DNA methylation loci in placenta associated with birthweight and expression of genes relevant for early development and adult diseases
Tekola-Ayele et al. *Clinical Epigenetics* 2020

Placental DNA methylation changes associated with maternal prepregnancy BMI and gestational weight gain
Shrestha ...Tekola-Ayele *IJO* 2019

Early pregnancy dyslipidemia is associated with placental DNA methylation at loci relevant for cardiometabolic diseases
Ouidir ...Tekola-Ayele *Epigenomics* 2020

Differential DNA Methylation in Placenta Associated With Maternal Blood Pressure During Pregnancy
Workalemahu ...Tekola-Ayele *Hypertension* 2020
Maternal cardiometabolic factors and birthweight in relation to placental methylome/transcriptome

- Relevant to biological processes involved in early development.
- Several placental methylated and expressed genes are well-known cardiovascular disease loci in adults.
Maternal and fetal genetic variation and birthweight/CVD

- **Maternal genetic variants:**
 - related to fetal growth (modulate *in-utero* environment)

 Polygenic risk for obesity, type 2 diabetes, lipids

- **Fetal genetic variants:**
 - overlapping effect on birthweight & cardiometabolic diseases (pleiotropy)

References:

- Shrestha ... Tekola-Ayele. *Obesity* 2019
- Shrestha ... Tekola-Ayele. *Front Genetics* 2018
- Rahman ... Tekola-Ayele. *JCEM* 2019
- Ouidir ... Tekola-Ayele. *J Clin Lipidology* 2019
- Tekola-Ayele et al. *Hum Genomics* 2019
- Tekola-Ayele et al. *Scient Reports* 2019
New Study

Aim 2 (PI: Tekola-Ayele). Genetics in fetal Growth and Placenta (gGAP)

- Previous studies’ focus: birth size, European ancestry populations, none on placenta
- Our focus: fetal size, placental aging, trans-ancestral (discovery in African Americans, n=4250 followed by trans-ethnic), multi-omics
- **Significance**: Insights into molecular mechanisms of early development, pregnancy complications & early origins of childhood & adult diseases
Current fellows
Marion Ouidir
Suvo Chatterjee

Former fellows
Tsegaselassie Workalemahu
Deepika Shrestha
Mohammad Rahman
Anthony Lee

NICHD Fetal Growth/DIPHR Team
Cuilin Zhang
Katherine Grantz
Una Grewal
Germaine Buck Louis
Stefanie Hinkle
Pauline Mendola
Jennifer Weck
Ron Wapner
Jing Wu
Xuehua Zeng
Several collaborators

Funding
NICHD, American Recovery and Reinvestment Act funding via contract numbers
HHSN275200800013C; HHSN275200800002I; HHSN27500006; HHSN27520080003IC;
HHSN275200800014C; HHSN275200800012C;
HHSN275200800028C; HHSN275201000009C
and HHSN27500008.
NIMHD
NIH OD
NIDDK