Genetic epidemiology of early growthcardiometabolic disease links

Fasil Tekola-Ayele

Earl Stadtman Investigator
Epidemiology Branch, Division of Intramural Population Health Research

Prior to joining NICHD...

2004- Podoconiosis: public health to genetics, back to public health

Socio-economic burden

Tekola-Ayele et al. *Trop Med* 2006 Tekola-Ayele et al. *PLoS Neg Tr Dis* 2009 Tekola-Ayele et al. *BMC Med Eth* 2010

Develop clinical grading system

Tekola-Ayele et al. Trop Med 2008

Genetics

The NEW ENGLAND
JOURNAL of MEDICINE

HLA Class II Locus and Susceptibility to Podoconiosis

Tekola-Ayele et al. NEJM 2012

Public health translation

Neglected tropical diseases

Podoconiosis: endemic non-filarial elephantiasis

Podoconiosis is a type of tropical lymphoedema clinically distinguished from lymphatic filariasis (LF) through being ascending and commonly bilateral but asymmetric. Evidence suggests that podoconiosis is the result of a genetically determined abnormal inflammatory reaction to mineral particles in irritant red clay soils derived from volcanic deposits.

Tekola-Ayele et al. *J Comm Genetics* 2015

2011–2016 genetics of cardiometabolic diseases, population genetics

African Genome Variation Project

Gurdasini*, Tekola-Ayele* et al. *Nature* 2015

*co-first author

Metabolic syndrome

Tekola-Ayele et al. *Mol Gen Met* 2015

Type 2 diabetes

Tekola-Ayele et al. *Pharmacogenomics J* 2014

NICHD 2016-

Genetic-epidemiology of early growth-cardiometabolic diseases

Motivation

The early life period is one of the critical times in health across the life course

Ramirez-Velez *Endocrinol Nutr.* 2012; 59:383-93; Barker et al. *Ped Perinat Epi* 1992

Research program

Goal: genetic mechanisms of early growth variations and links with cardiometabolic outcomes.

Genetic regulation of fetal growth

Tekola-Ayele et al. *PLoS Genetics*Rahman ... Tekola-Ayele *JCEM*Tekola-Ayele et al. *Hum Genomics*Tekola-Ayele et al. *Scient Reports*Ouidir ... Tekola-Ayele *J Clin Lipid*Tekola-Ayele et al. *BMC Medicine*Shrestha ... Tekola-Ayele *Front Genetics*Shrestha ... Tekola-Ayele *Obesity*Workalemahu ... Tekola-Ayele *Scient Reports*

Placental genome/aging & fetal growth

Tekola-Ayele et al. *Clinical Epigenetics*Ouidir ... Tekola-Ayele *Epigenomics*Tekola-Ayele et al. *Aging*Workalemahu ... Tekola-Ayele *Hypertension*Shrestha ... Tekola-Ayele *Int J Obesity*Workalemahu ... Tekola-Ayele *J Dev orig Health Dis*Shrestha ... Tekola-Ayele *Epigenetics*

Placenta, aging & fetal growth

- The placenta supports pregnancy and undergoes physiologic aging
- Some placentas may show signs of accelerated aging
- Disrupted aging of placenta based on pathologic & telomerase markers– may lead to pregnancy complications

(Behnia et al. Placenta 2015, 36: 969-973)

PNAS 2016; 113: 11066-68

Measuring aging "clock" using epigenetic markers

- Accelerated aging leads to functional decline but measuring age acceleration is challenging
- Epigenetic clock is a promising molecular estimator of biological age
 - Epigenetic age predicts chronological age with high accuracy
 - Age acceleration = epigenetic age chronological age
 - High heritability
 - Predicts cancer, cardiovascular diseases, mortality in adults
 - Early onset preeclampsia

(Horvath & Raj *Nature Rev Genet* 2018, 19:371-84; Horvath *Genome Biol* 2013,14:R115; Behnia et al. *Placenta* 2015, 36: 969–973)

Placental epigenetic aging studies

- Genetic susceptibility, ancestry
- Relations with fetal growth, sex differences

- Maternal factors (e.g., cardiometabolic, psychosocial)
- Molecular biomarkers of placental aging

- Age acceleration can have consequences on fetal growth
- Male fetuses more vulnerable to adverse neonatal outcomes, severe placental histopathological lesions
- Sex differences in placental response to adverse perinatal exposures, and epigenomic/transcriptomic profiles

(Naeye et al. Pediatrics 1971, 902-06)

Hypothesis

Sex-specific associations of placental age acceleration with fetal growth, neonatal anthropometry measures, and risk of low birth weight.

- The NICHD Fetal Growth Studies Singletons
 - a prospective cohort of 2,802 pregnant woman
- Gestational age confirmed by ultrasound
- Fetal growth measured by ultrasound at 5 gestation times & standard neonatal anthropometry
- 301 women provided placental samples at delivery (Buck Louis et al. Am J Obstet Gynecol 2015, 213:449.e1; Grewal et al. Int J Epidemiol 2018, 47:25)

Placental and maternal DNA profiling

Age Acceleration = DNA methylation age – gestational age

Characteristics of study participants

	Mean ± SD or n (%)		
-	Female Male		
	offspring	offspring	
	(n=149)	(n=152)	
Maternal age, n (%)			
<30 yrs	89 (59.7)	93 (61.2)	
30-35 yrs	44 (29.5)	45 (29.6)	
≥35 yrs	16 (10.7)	14 (9.2)	
Gestational age at delivery, wk	39.6 ± 1.1	39.4 ± 1.2	
Race/ethnicity, n (%)			
White	38 (25.5)	39 (25.7)	
Black	39 (26.2)	33 (21.7)	
Hispanic	53 (35.6)	49 (32.2)	
Asian	19 (12.8)	31 (20.4)	
Low birthweight (%)	4.7%	9.9%	

Fetal size differences per 1-week increase in Age Acceleration

	(95% CI)	P	(95% CI)	
Fetal weight, g	-17.4 (-34.0, -0.8)	0.04	14.5 (0.9, 28.1)	0.04
Head circumference, mm	-0.2 (-0.9, 0.6)	0.68	1.2 (0.5, 1.8)	0.001
Biparietal diameter, mm	-0.2 (-0.4, 0.1)	0.21	0.4 (0.2, 0.6)	8.5e-5
Abdominal circumference, mm	-0.8 (-1.9, 0.3)	0.16	1.3 (0.4, 2.3)	0.01
Humeral length, mm	-0.0 (-0.2, 0.2)	0.85	0.2 (0.1, 0.4)	0.01
Femur length, mm	0.0 (-0.2, 0.2)	0.97	0.2 (0.1, 0.3)	0.004

Birth size difference per 1-week increase in Age Acceleration

	Male neonate		Female neonate Estimate (95%	
	Estimate (95% CJ)	Р	CI)	
Birth weight, g	-114.0 (-166.1, -61.9)	3.0e-5	-31.9 (-70.2, 6.4)	0.10
Birth length, cm	-0.4 (-0.7, -0.1)	0.004	-0.3 (-0.5, -0.1)	0.01
Head circumference cm	-0.3 (-0.5, -0.2)	2.7e-5	-0.1 (-0.2, 0.0)	0.10

Tekola-Ayele et al. Aging 2019

Sex-specific associations differ based on gestational age, head bone vs long bone

Adjusted for maternal age, pre-pregnancy body mass index, race/ethnicity, marital status, educational status, health insurance ownership, parity, and mode of onset of labor.

Males: inverse association with all growth measures

Females: positive association with head bones throughout gestation, with long bones until end of 2nd trimester

Tekola-Ayele et al. Aging 2019

☐ Maternal cardiometabolic factors & placental aging

- Blood pressure
- Pre-pregnancy obesity
- Dyslipidemia
- Gestational weight gain

Adjusted for parity, health insurance, mode of onset of labor, marital status, educational status, preeclampsia status, and offspring sex

Workalemahu ...Tekola-Ayele J Dev orig Health Dis 2020

☐ Maternal dyslipidemia& placental aging

- HDL cholesterol
- LDL cholesterol
- Triglycerides
- Total cholesterol

Positive placental age acceleration among women with low HDLc compared to normal HDLc

Shrestha ... Tekola-Ayele Epigenetics 2019

☐ Genetic ancestry & placental aging

Women's genetic ancestry	ΔPAA, wk (95% Cl)
White	•
10% higher European ancestry	0.20 (-0.20, 0.60)
Black	
10% higher African ancestry	-0.10 (-0.40, 0.20)
Hispanic	
10% higher European ancestry	-0.10 (-0.30, 0.10)
10% higher African ancestry	-0.20 (-0.50, 0.00)
10% higher Native American ancestry	0.20 (0.02, 0.40)
Asian	
10% higher East Asian ancestry	-0.20 (-0.40, -0.04)
Offspring genetic ancestry	∆PAA,wk (95% CI)
White	
10% higher European ancestry	0.10 (-0.20, 0.40)
Black	
10% higher African ancestry	0.05 (-0.20, 0.30)
Hispanic	
10% higher European ancestry	-0.20 (-0.40, 0.10)
10% higher African ancestry	-0.40 (-0.60, -0.20)
10% higher African ancestry 10% higher Native American ancestry	-0.40 (-0.60, -0.20) * 0.30 (0.20, 0.50) *

Summary

- Placental epigenetic aging may influence fetal growth trajectories, with distinct responses by sex
- Maternal dyslipidemia, higher gestational weight gain and genetic ancestry may drive placental aging
- Placental epigenetic clocks may be potential markers for in-utero exposures that influence pregnancy outcomes

From GWAS ... to regulatory function in placental aging

 Genetic contributions on fetal growth vary by gestational age

Trans-ethnic GWAS (White, Black, Hispanic, Asian)

ITPR1 locus associated with lower fetal weight at 27-32 wk

From GWAS ... to regulatory function in placental aging

Haplotype blocks harboring ITPR1
GWAS SNP vary by ancestry

From GWAS ... to regulatory function in placental aging

Haplotype blocks harboring ITPR1 GWAS SNP vary by ancestry

East Asian (872 bp)

? Function

- induces calcium release from intracellular membranes
- mice itpr1-/- led to fetal growth retardation, decreased expression in placenta
- decreased expression in aged skeletal muscle

Fosket et al. *Physiol Rev* 2007, 87:593–58

Hypothesis

Decreased expression of *ITPR1* in placenta may lead to accelerated aging of the tissue, potentially linking the effect of the SNP on lower birthweight

Tekola-Ayele et al. *PLOS Genetics* 2020

Summary

- Genetic influences on fetal growth vary at different gestational weeks
- The *ITPR1* genetic locus may reduce fetal weight though a functional impact on placental aging identifying the *in-utero* mechanism can inform molecular and clinical intervention targets

Maternal cardiometabolic status→birth outcomes→future risk of CVD

- Maternal effect
- Fetal genetic effect
- Shared genes
- Fetal drive
- Environment

Maternal cardiometabolic factors and birthweight in relation to placental methylome/transcriptome

Clinical Epigenetics

DNA methylation loci in placenta associated with birthweight and expression of genes relevant for early development and adult diseases

Tekola-Ayele et al. *Clinical Epigenetics* 2020

International Obesity Journal of Obesity

Genetics and Epigenetics

Placental DNA methylation changes associated with maternal prepregnancy BMI and gestational weight gain

Shrestha ...Tekola-Ayele IJO 2019

Early pregnancy dyslipidemia is associated with placental DNA methylation at loci relevant for cardiometabolic diseases

Ouidir ... Tekola-Ayele Epigenomics 2020

Hypertension

Differential DNA Methylation in Placenta Associated With Maternal Blood Pressure During Pregnancy

Workalemahu ...Tekola-Ayele Hypertension 2020

Maternal cardiometabolic factors and birthweight in relation to placental methylome/transcriptome

associa of gene and ad

• Relevant to biological processes involved in early development.

vith maternal

2019

For reprint ord

Early pr with pla relevan

 several placental methylated and expressed genes are well-known cardiovascular disease loci in adults.

ension

sociated With

pertension 2020

Outuit ... Tekola-Ayele LpigeHolliles 2020

Maternal and fetal genetic variation and birthweight/CVD

- Maternal genetic variants:
- related to fetal growth (modulate inutero environment)

Polygenic risk for obesity, type 2 diabetes, lipids

Shrestha ... Tekola-Ayele. *Obesity* 2019

Shrestha ... Tekola-Ayele. *Front Genetics* 2018

Rahman ... Tekola-Ayele. JCEM 2019

releva

Ouidir ... Tekola-Ayele. J Clin Lipidology 2019

 Fetal genetic variants: overlapping effect on birthweight & cardiometabolic diseases (pleiotropy)

> Tekola-Ayele et al. *Hum Genomics* 2019 Tekola-Ayele et al. *Scient Reports* 2019

Ongoing studies

New Study

Aim 2 (PI: Tekola-Ayele). Genetics in fetal Growth and Placenta (gGAP)

- Previous studies' focus: birth size, European ancestry populations, none on placenta
- Our focus: <u>fetal</u> size, <u>placental aging</u>, trans-ancestral (<u>discovery in African Americans</u>, n=4250 followed by trans-ethnic), <u>multi-omics</u>
- Significance: Insights into molecular mechanisms of early development, pregnancy complications & early origins of childhood & adult diseases

Current fellows

Marion Ouidir Suvo Chatterjee

Former fellows

Tsegaselassie Workalemahu Deepika Shrestha Mohammad Rahman Anthony Lee

NICHD Fetal Growth/DIPHR Team

Cuilin Zhang
Katherine Grantz
Una Grewal
Germaine Buck Louis
Stefanie Hinkle
Pauline Mendola
Jennifer Weck
Ron Wapner
Jing Wu
Xuehua Zeng
Several collaborators

Funding

NICHD, American Recovery and Reinvestment Act funding via contract numbers HHSN275200800013C; HHSN275200800002I; HHSN27500006; HHSN275200800003IC; HHSN275200800014C; HHSN275200800012C; HHSN275200800028C; HHSN275201000009C and HHSN27500008.

NIMHD NIH OD NIDDK

