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INTRODUCTION  In  a typical Diffusion  Tensor Imaging (DTI) experiment, generally only  one estimate of a  tensor is  obtained in  each voxel. Since the 

tensor estimate itself is derived from the noisy diffusion-weighted (DW) signals,  here we derive the SD of the tensor and tensor-derived quantities by  

error propagation from the DW signals.  This error propagation technique relies  on the nonlinear least squares (NLS)  objective function of DTI.  This  

proposed technique is shown to produce precise estimate of the SD of FA. The simulation results show that the variability in tensor-derived quantities is  

largely  due to  the variability in  the reference signal if the DTI model includes the reference signal  as  a  parameter to be  estimated. A simple procedure is  

provided to ameliorate this problem.      

METHODS  Let f = 
n 6 

1 (s − αExp( X β )) 2∑ ∑	 2 i ij j
i=1 j=1 

be the NLS objective function where si and α  are the DW and reference signals, respectively. The DTI design

matrix is X  and β = [D T	 
xx ,D yy ,D zz ,D xy ,D yz ,D xz ] is the diffusion tensor parameter vector. Let g  be any smooth function of β  and let β̂ be the NLS  

estimate. The connection between the uncertainty of g  and of f can be represented pictorially. We first translate our coordinates to a region around 

f(β̂ )  and examine the mapping of the variability of f to a region around g(β̂ )  (Fig 1 A-B). By 2nd-order Taylor expansion, the change in f is 

∆ ˆf( ) = ˆ f(  + ) − f(  ) ≈ 1δ  T 2 ˆ β δ β δ
2 

∇ f(β )δ where  δ ≡ ˆ	(β) β − β and ∇ ˆ f(β ) = 0 because β̂ minimises f (Fig 1C). By 1st-order Taylor expansion, the change in g

is ∆ ˆ ˆg( g(β η) g(β ) ≈ ∇ T η) = + − η gη , where η is defined later. The Hessian matrix  ∇2f  is positive definite at β̂ and can be written as ∇ ˆ 1 1
2f(β ) = Q 2 2 )T Λ (QΛ where

Q is orthogonal and Λ is diagonal with positive elements. Therefore, ∆f( ) = 1 T 
η η η

2 
where 

1 
2 )Tη ≡ (QΛ δ . In the  η system, the change in f looks uniform in

all directions of η since ∆f( 1 T 
η) = η η2	  is the equation of a hyper-sphere (Fig 1E). To measure ∆g(η) , η has to satisfy ∆f( 1 T

η) = η η 2 and be parallel

to ∇ 
η g . Therefore,

1 

 ∆g( 2η) ≈ (2∆f(η)) || ∇ η g || (Fig 1F). By a change of variable from η back to  δ( β) (Fig 1D-F), we arrive at the error propagation equation

[1, 2]: ∆ 2 ≈ T ˆ ˆ ˆg(δ) 2∆f(δ)∇ β g( 2 β )[∇ f( 1β )] − ∇ β g(β ) . There is freedom in the choice of ∆f(δ) ; we have adopted the following definition ∆f(δ) ≡ ˆ f(β ) /(n − p) where n-p

is the number of degrees of freedom. This definition is convenient and intuitive because 2∆ ˆf( β) /(n − p) is an estimate of the variance of the DW signals

and, therefore, ∆g(δ)2 is  the variance estimate o f g.  The choice of p is  6 or 7 de pending on whether the reference signal, α , is to be estimated. 
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 FIG 1.  The pictorial representation of the error propagation framework	      
 

RESULTS AND DISCUSSION   
We have presented a simple error propagation framework for DTI based on the nonlinear least squares objective function. This technique can be used 
not only to measure the variability of the tensor and tensor-derived quantities but also to guide experimental design. In terms of applications, this 
technique can generate the matrix perturbation used to analyze the variability of the major eigenvalue and of the eigenvector, and to DTI tractography. 
Regarding the design of experiments, we investigated how the variability of α affects the SD of FA. From 50,000 sets of { α,s1 L,sn } which were 
generated from a single true tensor of FA = 0.74, Trace =2.19×10 mm2/s with a 23 gradient directions of b-value = 1000 s/mm2 and SNR=25, we carried 
out two procedures for comparison. The first procedure is the typical 7-parameter NLS estimation where tensor estimate is obtained directly from each 
set of { α,s1L,sn } and the sample SD of FA and mean value of the error-propagated SD’s were calculated and shown in Fig 2A. The second procedure is 
similar to the first but each α in the 50,000 sets of { α,s1L,sn } is replaced by the mean value of those 50,000 α ’s (Fig 2B). The reduction of variability in 
SD of FA based on the second procedure is evident and the precision of the SD calculated from the proposed technique is noteworthy. 
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FA Histogram (with reference signals averaging)
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FIG 2. The  FA histogram with  sample SD and mean  
error-propagated (EP) SD of FA without reference-signal  
averaging (A),  and with reference-signal averaging  (B).   

CONCLUSION An error propagation framework for DTI based on a NLS objective function is presented analytically and geometrically. This technique 
has wide applicability. Simulation results show variability in FA is mostly due to the reference signal. In other words, the design matrix for the typical 7­
parameter estimation is not optimal. More studies are needed to investigate the optimal design for estimating the reference signal. 
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