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INTRODUCTION  

The diffusion tensor is always measured in the presence of background noise. 

Recent experimental observations by Jeong et al.[1] and Lazar et al.[2,3] have 

shown that the cones of uncertainty (COU) [4,5,6] of the major eigenvectors of 

the diffusion tensors in the brain are mostly elliptical. Analytical approaches 

have also been developed to characterize the elliptical cone of uncertainty [7] 

through nonlinear least squares estimations [8]. Here, we present a new 

technique to construct the COU based on the inverse of the Gnomonic 

projection and two normalized geometric measures associated with the 

COU—the normalized areal and circumferential measures.  

METHODS  
A simple closed or Jordan curve [9] on the unit sphere divides the unit sphere 
into two regions. If the simple closed curve is not the great circle then one 
region will be greater than the other. The normalized areal measure is the ratio 
of the area of the smaller region on the unit sphere, which is enclosed by a 
simple closed curve whose Gnomonic (or central) projection [10] on the 
Cartesian plane is an ellipse as depicted in Figure 1A, to the area of the 
hemisphere. The ratio of the circumference of the simple closed curve on the 
unit sphere to the circumference of the great circle of the unit sphere is the 
normalized circumferential measure. The inverse of the Gnomonic projection is 
used to construct the proposed COU, Figure 1B, that avoids overlapping 
cones in neighboring regions. 
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Fig. 1. (A) Inverse Gnomonic projection of an ellipse of the Cartesion 
plane onto the unit sphere is accomplished by normalizing the vector 
on the plane to unit length so that the normalized vector is on the 
surface of the unit sphere. (B) The proposed construction of COU is 
based on the inverse Gnomonic projection of an ellipse of the 
Cartesion plane onto the unit sphere.

RESULTS AND DISCUSSION 
Simulated human brain diffusion tensor data were used to generate the 
normalized areal measure map, Fig 2A, and the normalized circumferential 
measure map, Fig 2B. The simulated data were generated from a single 
tensor model at an SNR level of 15. The normalized maps were computed 
from the 0.95 joint confidence region (or 95% confidence region), of the COU. 
Figure 3 shows the COUs of an axial slice of the simulated human brain using 
the proposed technique. 
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Fig. 2. (A) The map of the normalized areal measure and (B) the 
map of the normalized circumferential measure. The maps are 
generated from the 95% confidence COU at ant SNR level of 15.  

Fig. 3.  An axial slice of the map of  95% confidence COU at an SNR 
level of 15. 

The normalized circumferential and areal measures are local parametric 
coherence measures for quantifying tract dispersion. The key advantage of the 
proposed measures for quantifying uncertainty of the major eigenvector of the 
diffusion tensor is that these measures are dimensionless and normalized to 
unity. Further, they have direct geometric interpretations. 

Since the major eigenvector of the diffusion tensor is usually associated 
with the directional preference of the diffusing water molecules. The proposed 
measures, which are directly linked to the uncertainty in the major eigenvector 
of the diffusion tensor, may be important for probing the integrity of the white 
matter tracts in the brain and for assessing the quality and reliability of DTI 
tractography [11-15].
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