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Abstract 
We characterize electrostatic and other polymer- 

polymer interactions within an ultracentrifuge cell 
using a new electrochemical transport model. 
Applying conservation of mass and momentum of 
solutes and solvent, and Maxwell's equations valid 
in the electroquasistatic (EQS) limit, together with 
initial and boundary conditions on solute (and 
electrolyte) distribution, we predict the transient 
(nonequilibrium) and equilibrium solute (and 
electrolyte) distributions, net charge density, electric 
field, and electrostatic potential profiles. This model 
represents a siggificant advance over the Lamm 
equation (and its extensions) [U, which describe 
polymer-polymer interactions phenomenologically 
(using empirical virial c-oefficients) [21. 

Introduction 
The behavior of polyelectrolyte solutions and 

gels, colloids, and tissues is affected b electrostatic 

ultracentrifu e cell, we can titrate these media-- 

mechanical force distribution. owever, a large 
disparity exists between theoretical and measured 
concentration profiles in many polymeric solutions, 
which has been ascribed to non-ideal interactions 
[2], such as electrostatic repulsion and excluded 
volume, which have been modeled 
phenomenologically. 

Equations Governing Solute Transport 
The flux of solute i in the radial direction, 

interactions between charged molecu Y es. Within an 

subjecting t 1 em to a known, s atially varying 
€? 

l-&,t)i, is given by a Nemst/Planck equation: 

where Si is the Svedber sedimentation coefficient, 
yj is the electrical mo % ility, Di is the diffusion 
coefficient, o is the rotor angular velocity, Zi is the 
solute valence, ci(r,t) is the solute concentration, 
and Er(r,t) is the radial com onent of the 
macrosco ic electric field. A1 P variables are 
functions o P the radial coordinate r and of time t. 

Continuity for each solute within the cell is: 
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1,- t, - - V Ti + G(r,t)i - R(r,t)i 
at 

where G(r,t)i and R(r,t)i are the rates of production 
and removal of species i, respectively (e.g., H+). 

We use Maxwell's equations for charged particles 
in solution 131 to determine Er. The net (ionic) 
current flux, Jr(r,t), IS: 

N N 
Jr(r,t) = c Jr(r,t)i = F c Z j  rr(r,t)j 

i= 1 i= 1 
In the centrifuge, the net charge per mole of solvent 
is negligible, so that the appropriate form of the 
equauon of charge continuity is: 

imp1 ing that the initial macroscopic charge 
dismgution will be preserved during the experiment. 

Boundary Conditions 
We require that no current flows across the 

Jr(a,t) = Jr(b,t) = 0 

solvent/air (r=a) and solventkell (r=b) boundaries: 

Therefore, we can express Er explicitly in terms of 
Ci, its gradient, and other experimental parameters: 

i= 1 
providing closw to the transport model. 

Initial Conditions 
Initially we assume that all mobile species are 

ci(r,O) = c b ,  
well mixed (uniformly distributed) wirhin the cell. 

and that the initial macroscopic char e distribution 
satisfies *e bulk electroneutrality con f 'ticm: 
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i= 1 
pfree(r,O) = F zi ci0 = 0 . 

Taken together with the equation of char e 

all t and r within the centrifuge cell. 
conservation, bulk electroneutrality is satisfied B or 

Numerical Methods 
The governing equations and the boundary 

conditions are coupled, non-linear partial differential 
equations that we solved numerically for each Ci in 
the transient and steady-state cases, using a finite- 
element method. The steady-state case was solved 
using the constraint that the total mass of each 
species within the ultracentrifuge cell is conserved. 

Resul ts/Model Predictions 
Numerical solutions were obtained for a large 

uncharged solute (MW=70 ma),  for a char ed, 

(NaCI). By including additional transport equations 
fox [H+] and [OH-], and an equilibrium dissociation 
isotherm of acidic and basic charged grou s of the 

binary a ueous electrolyte as well as profiles of 
[H*j andqOH-1. From the concentration rofiles for 

Erfr,t), and the electrostatic potenual $(r,t) over a 
wide range of ionic strength (0.0001M-l.OM), and 
rotor angular velocity, of, (0 - 2ooo1t sec-1). Figure 
1 shows the concentration profile for an uncharged 
solute. 

non-dissociable solute in a binary electro f yte 

solute, we obtained its concentration pro P iles in a 

all mobile species, ci(r,t), .we calculate x pfree(r,t), 

Discussion 
The model predicts the correct qualitative 

behavior in all important limiting cases under 
equilibrium and nonequilibrium conditions. For 
example, when Er=O, the governing equations 
reduce to the familiar Lamm equations. However, 
unlike the Lamm equation, the system of 
electrochemical transport equations, and the (no- 
flux) boundary conditions are generally inextricably 
coupled because Er acts on each charged solute 
molecule while it is produced by the dismbution of 
all charged molecules. Conse uently, linear non- 

sufficient to describe this coupling without also 
ap 1 ing Maxwell's equations. 

While previously unre orted, the model predicts 

r in colloidal and polyelectrolyte solutions, because 
the charged solute is distributed non-uniformly. 
The pH may also vary between the inner and outer 
boundaries at the highest rotor RPM. This 
phenomenon may be important in ligand binding 
and thermodynamic stuhes of charged molecules, 
even at physiological ionic strength. 

equilibrium thermodynamic an 9 ysis [4] may nor be 

that CO- and counter-ion (E stributions may vary with 

Normalizin the govemin equations yields the 
dimensionless B eclet number f or each solute, 

S jd(b-a)2 
Di Pei = 9 

a transport parameter that affects steady-state 
concentration profiles, the time it takes to achieve 
them, and the scaling of results obtained in different 
ultracentrifugaaon experiments. 

We have considered polyelectrolyte systems in 
which the dominant non-ideal interaction is 
electrostatic, however the model can be extended to 
incorporate other nonideal interactions. 

Conclusion: 
This formalism describes electrochemical 

transport of char ed and uncharged macromolecules 

other interactions to be included self-consistently, 
while obviatin the use henomenological vinal 

of electrolytes, (e. [OH'], &+I, [Na+], or [Cl-]) 

The electrochemical transport model also can be 
exploited to estimate non-equilibrium transport 
parameters, such as molecular mobility. 

in an ultracentri P uge cell, allowing electrostatic and 

coefficients. T fi e model ap so redicts dsmbutions 

that we may not c f? mse to or be able to measure. 
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Fig. 1. Concentration profile for uncharged solute. 
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