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INTRODUCTION: The choice of gradient sampling orientations for DT-MRI experiments has exercised many groups in the field. Of particular interest is the design 
of sampling schemes that will ensure that the error / variance in tensor estimates is independent of the relative orientation of the tensor to the reference frame 
established by the sampling vectors, which others have termed ‘statistical rotational invariance’ or ‘SRI’1,2. Previous work has identified a relationship between the 
condition number of the quadratic encoding matrix, formed from the gradient sa mpling orientations, and the variance in the estima ted diffusion tensor3. Batchelor et 
al.4 showed that certain sampling schemes (e.g., the dual-gradient scheme) had rotationally variant condition numbers while, those derived from the vertices of an 
icosahedron had rotationally invariant condition numbers. Thus, schemes based on vectors pointing to the vertices of an icosahedron (or tessellated icosahedrons) cause 
initial excitement. However, Jones2 showed that, in discord with this theory, not all icosahedral schemes are the same – and that rotationally invariant condition number 
is a necessary but insufficient requirement for rotational invariance. A more general framework has been proposed1,5 – which provides a template for sampling schemes 
in terms of the fourth order precision matrix. Previous theoretical considerations suggested that, under the linear framework, a statistically rotationally invariant 
sampling scheme could not be designed, except for the trivial case of isotropic tensors5. Here, we address an important and long outstanding question in the DT-MRI 
literature, i.e. In the limit of an infinite number of sa mpling orientations, can one design a sampling scheme which is statistically rotationally invariant? 

THEORY: By combining results from previous works1,5,6, we can show how the precision matrix, M’, in estimation of the diffusion tensor, D, can be expressed i n 
terms of the elements of the m unit sampling vectors, g , the b-values, bm and resultant B ma trices, Bm (where Bm =bmg T

m gm), via Eq. [1] , where α = 0 and 1 for non­
linear and linear regression, respectively: 
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 It has been shown that for the precision matrix to be statistically rotationally invariant, it should take the following general form1,7: 

⎡ λ + 2µ λ λ 0 0 0 ⎤ 
⎢ ⎥ λ λ + 2µ λ 0 0 0 
⎢ ⎥  
⎢ λ λ λ + 2µ 0 0 0 ⎥ [2] 
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⎢ ⎥

0 0 0 0 0 4µ⎣ ⎦ 
In Eq. [1], M' 4,4 = 4M' 1,2 , M' 5,5 = 4M' 1,3  and  M' 6,6 = 4M' 2,3 , which on comparison with Eq. [2] means that λ must be equal to µ..  To conform to the prescription in Eq. 

[2], all elements of M’ should confor m for all possible tensors. Therefore, if we can find just one example of non-conformance, we have shown that the design is not 
SRI.  To make progress, we examine just the non-zero elements of M’, which contain only even powers of the elements of sampling vector g. Thus, we define an even 
function of these elements, as: κ ( g p ) = ( g X p 

) 2 l ( g Y p 
) 2 m ( g Z p 

) 2 n . Summing over an infinite number of directions, is the same as integrating over all angles – so we re­

parameterize g in spherical co-ordinates, g = [sinθcos , sin sin , cosφ θ φ φ], thus the form for the infinite sums in Eq. [1] becomes 
 2 2π π 

< f >= b 
exp( −2Tr(BD))κ (g) sin( θ )dθdφ [3] ∫ ∫4π φ =0 θ =0 

If we assume D is aligned with principal lab frame, (i.e., Dij=δijλi, where δij is the Dirac delta function, and λi are eigenvalues), then 
  2 2π πb 2l 2m 2n 2 2 2< f >= ∫ ∫ (g X ) (gY ) (gZ ) exp( −(s1 g X + s2 gY + s3 gZ )) sin( θ)dθdφ [4] 4π φ=0 θ=0 

where si = 2bλi, for i=1,2,3.  

First, we consider the trivial case of isotropic tensors, i.e., λi = λ. The exponent in Eq.[4] can be factored out as a scalar multiplier, and the result is the sum of an infinite 
number of sampling orientations which Batchelor et al.4 have previously shown takes the for m in Eq. [2]. For a more general case, however, the evaluation of Eq.[4] 
becomes more complex. Space prohibits detailed working, (utilizing Mathematica), but the end result is: 
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1 F1 (a ;b; z)= 1 F1 (a ;b ; z) / Γ(b) is the regularized confluent hypergeometric function, 
∞ ( ) 1 F (a ;b ; z ) = (a) z k 
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 is the  Kummer hypergeometric function,  and 

(a)n  = a(a+1)(a+2)⋅⋅⋅(a+(n-1)) is the Pochha mmer function.  We now assume a general tensor such that (s1, s2, s3)=(2bλ1, 2bλ2, 2bλ3)=(0.1, 0.01, 0.001) and evaluate the 
leading three diagonal elements of M’, (M , 

1,1 M2,2 and M3,3) using Eq. [5]. The results are f(2,0,0, 0.1, 0.01, 0.001) = 0.195056…; f(0,2,0,0.1,0.01,0.001) = 0.195754… 
and f(0,0,2,0.1,0.01,0.001) = 0.190843…. This indicates that the leading terms are not equal and therefore the prescription given in Eq. [2] is violated. 

CONCLUSION: In the limit of an infinite number of sampling vectors, the precision matrix is rotationally invariant only for the trivial case of isotropic tensors – a 
result previously outlined elsewhere5. Even in this infinite limit, however, for a given anisotropic tensor, the leading 3 diagonal terms of M’ are unequal and hence the 
condition laid out in Eq. [2] is violated. As discussed earlier, just one exa mple of non-conformance to Eq. [2] is sufficient to conclude that, despite claims by some 
groups to the contrary, it is indeed NOT possible to design a statistically rotationally invariant sampling scheme. 
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