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Purpose 
To propose a methodology to calculate continuous fiber-

tract trajectories from measured diffusion tensor MRI data, 
and a rationale for determining fiber tract continuity. 

Introduction 
In normal and pathological tissues, fiber tract trajectories 

would provide valuable new microstructural information. In 
aging and development it would provide a means to follow 
changes in fiber-architecture. DT-MRI (1) is now the first 
noninvasive imaging modality capable of generating such 
fiber-tract trajectories. This is because in each voxel, the 
fiber tract direction is paral lel to the eigenvector, e , 1

associated with the largest eigenvalue, A.1, ofthe local 
diffusion tensor, D (1). However, £ 1 measured byDT-MRI 
are inherently discrete, noisy, voxel-averaged estimates of 
the ''true" direction vectors (2). To date, it bas not been 
feasible to reconstruct continuous fiber tract trajectories 
from the measured £ 1• However, a new, efficient D-field 
processing methodology that we just developed, generates a 
continuous diffusion tensor field, D(x), from measured DT-
MRI data (3) from which a continuous £ 1-field map can be 
calculated. Then, the method below can be used to calculate 
fiber tract trajectories, and assess fiber tract continuity. 

Theory 
The fiber tract trajectory vector, r(s), is parameterized by 

arc length, s. We solve the linear forced vector differential 
equation on the left below for r(s) (4): 

--dr(s) =t(s); t(s) =e1(r(s))
ds 

The key new idea presented on the right above is to equate 
the normalized eigenvector of D(r(s)), £ 1(r(s)), (associated 
with the largest eigenvalue of D(r(s)), A1(r(s)), and the unit 
vector, t(s), tangent to the fiber tract trajectory vector, r(s).

Methods 
Numerical methods must be used to obtain r(s) from D(x). 
Starting at a point x0 on r(s), we evaluate D(x0), calculate 
e1(x0) (which is parallel to the slope of r(s) at x0), and 
approximate the position of a nearby point on r(s), x1, using
a Taylor series expansion of x about x0 : x1 = X0 +dx ... 
Since the correction, dx is parallel to the fiber tract 
direction at x0, dx =a £1(x0 ), where a is a (small) constant. 
These steps are repeated for a new point, x 1; the process is 
then iterated. This is Euler's method. While easy to 
implement, there is no way to correct its prediction of r(s), 
leading to accumulated errors (5). However, using our 
continuous representation of D(x), we can now calculate 
second and higher derivatives of e1( x) at any point, and thus 
improve accuracy by employing higher order correction 
schemes, e.g., Runge-Kutta methods (5). 

Results 
To test their fidelity and spatial frequency response, a 

family ofanalytical 3-d D(x) maps was synthesized with 

fiber tract direction fields having a (a) non-zero divergence 
(converging or diverging fiber pattern), (b) non-zero curl 
(circulating, open or closed fiber pattern), or {c) periodic or 
uniform fiber directional pattern. Fig 1 shows a fiber tract 
trajectory, r(s), calculated from such a test map in which all 
three Euler angles of D(x): o(x), p(x), and e(x), varied 
continuously through the image volume. 

_Fig 1. Computed 3-d fiber tract trajectory from synthetic D(x) image. 

Predictably, however, we were unable to follow the fiber-
tract trajectory through singularities (sources or sinks) in 
the fiber direction field. Closed and open fiber paths could 
be followed reliably, though, provided that the step size was 
small compared to the local radii of curvature. 

Discussion and Concluding Remarks 
Two paradigmatic problems arise in this emerging field of 
DT-MRJ Fiber Tractography in trying to assess fiber-tract 
continuity or functional connectivity. One is an initial 
value problem--to follow a fiber trajectory starting from 
one point on it. Another is a two-point boundary value 
problem--to establish whether two points (or regions) are 
connected by a single fiber-tract (or set of fiber tracts). 
Note, if these regions are connected by fiber tracts that 
cross, branch, merge or fan out, causing "powder 
averaging" of the D-field at these points (6), then without 
additional a priori or a posteriori information about the 
distribution of fiber tract directions within these voxels, 
tracing fibers through them is problematic. In functional 
PET and MRI studies, "activity" is often reported 
simultaneously in different bmin regions following 
stimulation. Here, it is naive to imagine that DT-MRI alone 
can provide an anatomical basis for "simultaneous activation 
by establishing connections between these regions via gross 
neural pathways . Nevertheless, using the new methodology 
presented here, determining fiber trajectories in large
coherently oriented white matter tracts, such as the spinal 
cord, corpus callosum, and pymmidal tracts, as well as in 
other ordered soft tissues, is now feasible. 
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