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INTRODUCTION 
Articular  cartilage is a highly inhomogeneous  soft tissue with  

composition, structure, and mechanical properties that vary with depth 

and region.  Its  primary constituents (water,  collagen II fibrils, and 

aggrecan proteoglycans) define its functional role as  a load-bearing 

structure.  An understanding of local  structure-properties  relationships 

in cartilage can help in identifying the link between mechanical stress  

and biochemical processes responsible for pathological conditions  

such  as osteoarthritis.  Although constitutive laws have been  

developed to describe the bulk behavior of cartilage [1, 2], there 

remains a lack  of appropriate  models  to  describe the mechanical and  

thermodynamic properties of inhomogeneous, gel-like systems.   

Researchers have thus relied on osmotic techniques [3] and the atomic  

force microscope (AFM) [4] to derive  contributions of the collagen  

network or aggrecan macromolecules to cartilage mechanics.  Our 

goal is  to map the osmotic  and mechanical properties of  cartilage using 

a tissue osmometer [5] and the AFM.  

Due in large part to its versatility, the AFM has become prevalent  

as  a tool  for  characterizing biological  and biomimetic materials.   

Based on the  small tip  size and controlling of tip-sample  interactions,  

it is a powerful technique for imaging surface topography with sub-

nanometer resolution.   Unlike electron microscopes, imaged samples  

can be immersed in liquid,  allowing biological specimens to be  

maintained at or near their native conditions.  The AFM  is  well  suited  

for measuring the local elasticity of small, inhomogeneous samples.   

For example,  it has been used  to  study the  changes  in the  elastic 

modulus of  cartilage along the  articular surface  [6].  

Despite the  advantages of  the AFM,  tip geometry  and data  

processing issues hinder the  consistency of elasticity  measurements on 

soft biological  tissues.  Although improvements  to  experimental  

techniques and to the Hertzian model of contact  can correct  for finite  

sample thickness and different  tip geometries [7],  difficulties still arise 

in determining the  contact point  from the force curves.  Here, we  

describe a  strategy for optimizing and automating the data  fitting 

procedure  and present  examples of the approach  as applied to  the 

testing of tissue-engineered cartilage.  

MATERIALS AND METHODS 
Preparation and Evaluation of Tissue Engineered Cartilage  

Tissue engineered  cartilage was grown from chick embryo sternal  

chondrocytes  seeded in poly(vinyl  alcohol) hydrogel scaffolds [5].   

After  a five-week culture period, the ca rtilaginous tissue was removed 

and affixed to microscope  slides.  The slides were immersed in PBS  

solution until mechanical testing.  

Elasticity measurements were performed using a commercial   

AFM (Bioscope with Nanoscope  IIIA controller, Veeco Metrology,  

Santa Barbara, CA) with two types of  cantilever  tips:  sharp pyramidal  

with a 35° half-angle  and spherical  with a 9.6 μm diameter. 

Curve Fitting  
Mathematica (Wolframs Research, Champaign,  IL) and  

MATLAB (Mathworks, Natick, MA)  code were developed to  

automate  the fitting procedure.  Results from both programs were 

compared to validate  consistency.   In the processing of AFM force 

curves, tip geometry was  accounted  for by selecting the  appropriate  

mathematical model.  The classical Hertz theory of  contact mechanics  

relating the force to the indentation depth of a spherical indenter is  

given by 

1 

F  =  4ER  1/2 3δ /2  /  3(1-ν 2),  (1)  

where F is the normal force applied by the indenting rigid sphere of  

radius  R; E and ν are Young’s modulus and Poisson’s ratio of the 



sample, respectively; and δ  is the resulting indentation depth of the 

sample.  Bilodeau’s approximate solution to the  pyramidal  indenter  

problem  [8] was used for the sharp tips.  The cartilage was assumed to  

be incompressible. 

 Each curve was first preprocessed to remove overtly extraneous  

data  (e.g., occasionally, the probe adheres to the  sample  and upon  

retraction, does not detach from the  sample; this causes negative 

deflection, which is seen  as  a concave  inflection near the beginning of  

the curve).  The model was then fitted to the truncated  curve by  

searching for the probable  contact point  from among the discrete (z, d) 

pairs in the dataset, where z  is the displacement of the  fixed end of the 

cantilever and d is the measured tip deflection.  Goodness of fit was  

evaluated by calculating the mean-square-error (MSE).  Nonlinear 

least-squares routines were utilized and the Golden-Section method  

was implemented in  the search. 

 The probable solution (i.e., contact point and E) was next used as 

initial values in  refinements of the fit.  To minimize the influence of  

noise  in the data, the estimated contact points  in these  subsequent  fits  

were permitted to deviate from the original curve within a specified  

tolerance based on the range of  cantilever deflections.  Lack of  

significant  improvement  in the MSE was indication that the  true 

contact point was not captured by the original dataset.  In this  

circumstance, a final search was performed outside  the range of  the  

data.  

RESULTS AND DISCUSSION 
 Approach curves were analyzed for each data set.  The original  

and fitted curves for several representative measurements (soft,  

intermediate, and stiff) using the pyramidal tip are  shown in Fig. 1.   

Also  shown are the  results for an example using the  spherical  tip.   

Values in parentheses are the root-mean-square error of the fit as a  

percentage of  the range of cantilever deflections.  

Figure 1. Plots of original  (light and dark blue) and fitted 
(red and magenta) data.  Solid squares indicate optimized 
contact points. “X” marks an inflection point and values in  
parentheses are the root-mean-square error of  each fit as a 

percentage of  the range of cantilever deflections.  

 Data processing is  a necessary step to remove contributions from  

tip-surface interactions  and the strain-softening that is occasionally  

observed.  Strain hardening effects  can be excluded in  a  like manner.   

Inclusion of  such  effects skews the results because models based on 

Hertzian mechanics  describe  only linearly elastic  behavior.  

 For substrates of  intermediate  and high stiffness,  an upturn in the 

force  curve at  the onset of  tip  engagement is easily distinguished.   The 

vertical ramp size of  the cantilever can therefore be adjusted to bracket  

the contact point.  This feature is usually absent  in the  testing of very  

soft materials.   The fitting scheme  described above allows for the 

possibility that the true contact point  lies outside the ramp size.  The  

curve  corresponding to the soft  sample in Fig. 1 indicates that large 

errors are incurred by confining the search to points within the dataset.   

The errors  in the fits of  all datasets are less  than 2% of the total range  

of cantilever deflections.   In each case, the  automated fitting routine 

was capable of  identifying the  contact point  that resulted in  an optimal  

fit.  

 We have shown that  the data  fitting strategies described here  are 

capable of reliably addressing many of the difficulties  encountered in  

the analysis of force curves for compliant materials. The tissue-

engineered cartilage used in this study exhibited a large range of  

mechanical properties  as demonstrated by the distinct types of force 

curves in Fig. 1.  The robustness of this  approach makes it possible to  

automate the processing of divergent populations of datasets  and 

facilitates t he use of  the  AFM  in data  collection for statistical studies.  
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