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Introduction: In the q-space NMR experiment the measured signal, E(q), is the 3-D Fourier transform of the displacement probability 
distribution p(R,∆) (1).  When the direction of q is held fixed but its magnitude is varied, i.e. q = q r̂, then E(q) is the Fourier 
transform of the marginal displacement probability distribution, obtained by projecting p(R,∆) onto r̂, a result which follows directly 
from the Fourier Slice Theorem. This projection process creates confusion when E(q) data is used to infer microscopic-scale 
molecular displacements and complicates the definition and meaning of the apparent diffusion coefficient (ADC). 

Macroscopic ADC Measurements: Following Callaghan (1), we consider a simple 2-D (or 3-D cylindrically-symmetric) anisotropic 
diffusion process in which we write the measured apparent mean-squared displacement, <  R2 >, in terms of the principal diffusivities 
in the parallel and perpendicular directions,  D|| and D⊥, obtained by projecting the diffusion tensor, D, along the unit-vector specified 
by r̂ = (cos(θ),sin(θ))T (see Eq.(1)). Here D is expressed in the principal coordinate frame, ∆ is the diffusion time, and θ is the angle 
between r̂ and the eigenvector associated with D||. If the ADC is defined as <  R2 > / (2∆), then we obtain the now familiar peanut 
shaped profile of ADC(θ) predicted by Eq. (2). 
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Microscopic Brownian Probabilistic Picture: Consider  p(R,∆) obtained by following spin-labeled molecules in  the same anisotropic  
medium.  For the same  anisotropic diffusion process,  p(R,∆)
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where R is expressed in the polar coordinates, (R, θ).  Note, for each  direction,  p(R,∆) can be expressed as a 1-D diffusion process  
along  R as in Eq. (4).  Equating terms dependent on  θ in Eq.  (3) and (4), we can define a  1-D diffusion coefficient, De (θ): 
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In the limit in which  D|| is finite and D⊥ = 0, approximating a nematic liquid crystal, we obtain Eq. (6), in which diffusion occurs only  
along the parallel axis while no random motion occurs along any other directions.  
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Figure 1. (a) Polar plot  of  De(θ) (solid  line)  
and ADC(θ) (dashed line)  for a case 
D||/D⊥=7; (b) RMS displacement  of the  
diffusing particles as a function of  θ, based 
on  the Brownian  model, Eq.5,  (solid  line)  
and ADC model,  Eq.2, (dashed line). 

Discussion:  The 1-D limit for the microscopic diffusivity obtained in Eq. (6) should be compared to  Eq. (7)—the corresponding
  
limiting case for  the ADC. Clearly, Eq. (6) predicts an ADC profile that is peanut-shaped when there is uniform, 1-D anisotropic 

diffusion.  Although there is molecular diffusion only along the parallel direction, it  appears that  diffusion occurs in  all directions,
  
except along  θ = 90°. More important, qualitatively similar behavior is also predicted for ADC(θ) obtained for restricted tubes, such as
  
those describing  water  diffusion in white matter and for other  restricted geometries.  

The disparity between the molecular scale and ADC profiles arises because the Einstein equation is used to relate the apparent mean-

squared displacement to the ADC, as in Eq.(1) above.  However, by projecting p(R,∆) along the direction of the diffusion gradient, all
 
diffusive motion having a component of the displacement in that direction will be observed.  Therefore, one measures apparent
 
displacements in virtually all directions, even when there is diffusion only along one. 


Conclusions: If one uses the familiar Einstein equation to define the ADC as the apparent mean-squared displacement divided by
 
twice the diffusion time, as in (2), then this ADC will not be consistent with the microscopic diffusivity measured in various
 
paradigmatic anisotropic media. Moreover, directionally dependent ADC measurements, ADC(θ), will generally not reflect the  true
  
microscopic diffusion profile, obscuring the underlying microstructure of a material or tissue.
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