BPCA Rheumatology Therapeutic Area Working Group

Working group co-chairs:

Mara L Becker, MD, MSCE
Associate Professor of Pediatrics
Children’s Mercy Hospitals and Clinics

Laura Schanberg, MD
Professor of Pediatrics
Duke University Medical Center
History of the subspecialty

- Do children really get arthritis??
 - Reports of arthritis in children over 100 yrs ago
 - National professional organizations did not recognize pediatric rheumatology until mid-1970’s
 » 1976: ARA “Park City meeting” no more than 30 pediatric rheumatologists in the US at the time
 » Pediatric Rheumatology Collaborative Study Group (PRCSG) developed standard methodology for the design, conduct, and analysis of drug trials in children with rheumatic disease
Barriers to therapeutic development

- Diseases are rare
- Small workforce → large clinical need, research naive
- Unknown pathophysiology and etiology
- Heterogeneous phenotype
- Lack of validated outcome measures
- Barriers inherent to pediatric studies
 - vulnerable population
 - few biomarkers
 - ethics/acceptability of placebo
 - paternalism
Overcoming barriers: collaborative efforts

- **PRCSG**
 - Industry-sponsored studies
 - Collaboration with PRINTO (Paediatric Rheumatology InterNational Trials Organization)

- **Childhood Arthritis and Rheumatology Research Alliance (CARRA)**
 - North American investigator-initiated network focused on facilitating high quality collaborative clinical and translational research
 - CARRA Registry
 - Consensus Treatment Plans (CER)
 - CARRA CoRe
CARRA registry enrollment

Disease Count

<table>
<thead>
<tr>
<th>Disease</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>JIA</td>
<td>5669</td>
</tr>
<tr>
<td>SLE</td>
<td>825</td>
</tr>
<tr>
<td>JDM</td>
<td>540</td>
</tr>
<tr>
<td>Localized scleroderma</td>
<td>301</td>
</tr>
<tr>
<td>Vasculitis</td>
<td>162</td>
</tr>
<tr>
<td>JPFS</td>
<td>153</td>
</tr>
<tr>
<td>MCTD</td>
<td>138</td>
</tr>
<tr>
<td>Idiopathic Uveitis</td>
<td>62</td>
</tr>
<tr>
<td>Systemic sclerosis</td>
<td>48</td>
</tr>
<tr>
<td>Auto-inflammatory disease</td>
<td>45</td>
</tr>
<tr>
<td>Sarcoid</td>
<td>44</td>
</tr>
<tr>
<td>Primary Sjogrens</td>
<td>14</td>
</tr>
<tr>
<td>TOTAL Disease Count</td>
<td>8001</td>
</tr>
</tbody>
</table>

Number of Follow Up Visits

11/26/2012

<table>
<thead>
<tr>
<th>Follow-Ups</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Follow-Up</td>
<td>4,472</td>
</tr>
<tr>
<td>2 Follow-Ups</td>
<td>2,028</td>
</tr>
<tr>
<td>3 Follow-Ups</td>
<td>730</td>
</tr>
<tr>
<td>4 Follow-Ups</td>
<td>167</td>
</tr>
<tr>
<td>5 Follow-Ups</td>
<td>22</td>
</tr>
<tr>
<td>6 Follow-Ups</td>
<td>12</td>
</tr>
<tr>
<td>7 Follow-Ups TOTAL</td>
<td>5</td>
</tr>
<tr>
<td>Follow-Ups</td>
<td>7,436</td>
</tr>
</tbody>
</table>
Several themes:

- “Older” drugs commonly used with scant pediatric data to guide use
- Formulation remains a major issue
- Newer biologics lack indications for common usages
Disease focus for rheum WG subcommittees

- **Idiopathic Uveitis**
 - Andreas Reiff MD, Steven Spalding MD, Mary Toth MD

- **Juvenile Idiopathic Arthritis**
 - Polly Ferguson MD (Chair), Marcia Buck PharmD, William Rodriguez MD PhD, Carol Wallace MD, Pamela Weiss MD

- **Bone biology**
 - Gordon Klein MD, Mary Toth MD

- **Pediatric Systemic Lupus Erythematosus**
 - Larry Jung MD (Chair), Rond Portman MD, Marilynn Punaro MD, Scott Weir PharmD PhD

- **Juvenile Fibromyalgia**
 - Michael Reed PharmD (Chair), Douglas Silverstein MD, Janice Sullivan MD, Surendra Varma MD
IDIOPATHIC INFLAMMATORY UVEITIS
Idiopathic non-infectious uveitis: background

- Inflammation of the uvea of the eye
 - Anterior, intermediate, posterior, pan
- 10-15% of blindness in US caused by uveitis and leading cause of acquired blindness in childhood
- JIA most frequent cause of chronic intraocular inflammation in children
 - Present in 10-20% of kids with JIA

American Uveitis society
Uveitis: clinical need

- Only FDA approved treatments for adult and pediatric non-infectious uveitis are topical, oral, or intravitreal steroids.
- Role of immunosuppressive drugs in refractory or steroid dependent uveitis is poorly studied.
- Current treatment options based on expert opinion, open label studies and anecdotal case series.

Uveitis: knowledge gaps - methotrexate

- Most commonly used DMARD
 - Safety and adverse effects well-studied in pediatric populations
 » Infections, cytopenias, GI upset, hepatic toxicity

- Effective in adults > children?

- Approved for pJIA at low doses (10mg/m²)
 - Higher doses and SC route used for uveitis
 » Optimal dose or route for treatment of uveitis not known

Uveitis: knowledge gaps – biologics

- Cytokine blocking agents used in MTX resistant patients
- Utility/indication for biologic use for treatment of uveitis? Appropriate dosing? Long term safety?
1) indication and 2) dosing guidelines

- Pts with chronic uveitis who fail minimum of 4 week trial of topical, subtenon, intravitreal or oral steroids
- Begin with MTX doses of 10-15mg/m² SC, titrate dose up to 1mg/kg/week (max 40mg weekly)
- Outcomes at 6 months: anterior chamber cell density, intraocular pressure, flare, visual acuity, ability to taper steroids
Recommendations – biologics (MTX failure)

1) indication, 2) dosing guidelines, 3) long term safety, and 4) when to withdraw

- Anti-TNF-α:
 » Vast variability of use in clinical practice. Infliximab dosed q 4 weeks at doses 5-20mg/kg/dose to treat severe uveitis

- CTLA-4 blockers (abatacept)
 » Anecdotal reports of efficacy in refractory patients

- Anti-IL-6 (tocilizimab)
- Anti-IL-1 (anakinra, canakinumab)
- Outcome measures: same as mtx studies
- Long term safety/efficacy studies use CARRA Registry
- When to withdraw therapy?
JUVENILE IDIOPATHIC ARTHRITIS
JIA: background

- Immunoinflammatory disorder of unknown etiology
- Affects approximately 300,000 children in US alone
- Heterogeneous presentation
JIA: background

- 2011 ACR recommendations for treatment of JIA
 - Scant strong evidence, utilized available descriptive studies and expert consensus

- Consensus treatment plans for CER are being developed and piloted utilizing the CARRA registry

JIA: clinical need

- Several recommended therapies for JIA do not currently have an indication for use
 - anti-IL-1 therapy and infliximab

- Long term large scale safety studies needed to detect rare adverse events
JIA: knowledge gaps

- **Anakinra (anti-IL-1) in sJIA**
 - Optimal dosing UNKNOWN, NO pediatric PK data
 - Formulation issues
 » Painful
 » Difficult to titrate for weight based dosing (100mg/0.67ml vials)
 » Requires transfer of drug from original pre-filled syringes to accommodate for smaller doses
 - Targeted sJIA patient populations
 » Subset of pts NOT responsive or lose response over time- how can we identify these patients?

JIA: knowledge gaps

- **Infliximab (anti-TNF-α)**
 - Poorly designed RCT prevented an indication for JIA, but case reports, case series and open label clinical trials report efficacy
 - *It is commonly used off label*
 - Optimal dosing? Differences in weight normalized clearance and volume in kids less than 7 yrs -- due to differences in REE?
 - Optimal timing? Early vs. step up approach?
 - Variability in response (up to 40% do not respond or lose response over time)? Antibodies to drug?
 - Long term safety

JIA: knowledge gaps

Long term large scale safety studies important to understand risk vs. benefits

- Traditional single product Phase IV registries inadequate to determine long term safety
 - Detection of rare adverse events requires 10,000+ pt years of follow up
 - Numbers of JIA pts available for participation is limited - all competing to recruit from same pool
 - Most kids on multiple agents serially over time, making it difficult to prove causality
 - Need to consider the contribution of the underlying disease as well - need registry with large numbers of patients with varied medication exposures
JIA: recommendations - biologics

- Anakinra:
 - PK studies in children
 - Efficacy studies in sJIA
 - Collaborate with manufacturer on development of a pediatric friendly formulation or safer method of titrating dose
 - Targeted biomarker studies to determine which sJIA subjects will respond to anti IL-1 vs anti IL-6 therapy
 - Long term safety studies
 - CARRA Registry
 - CARRA CoRe
JIA: recommendations - biologics

- **Infliximab**
 - Developmentally targeted PK studies to determine if higher doses required in younger children (e.g. tocilizumab)
 - Studies to investigate variability in response to individualized therapeutic decisions, i.e. biomarkers, pharmacogenomic studies, HACAs
 - Long term safety studies
 - CARRA registry
 - CARRA CoRe
JIA: recommendations - safety

- Long term large scale safety studies
 - Formal support for CARRA-Consolidated Registry (CoRe), a novel pharmcosurveillance model based on established multicenter CARRA registry.
BONE BIOLOGY
Bone biology: background

- Bone metabolism of concern due to risk factors for osteopenia/osteoporosis:
 - Long term steroid use to treat underlying diseases
 - Disordered inflammatory cytokines

- Bone loss in childhood increases risks of morbidity in adulthood
Bone biology: background

- Bisphosphonates are FDA approved for treatment or prevention of glucocorticoid induced osteoporosis:
 - Alendronate
 - Risendronate
 - Zoledronic acid

- However, no drugs approved for this indication in children
Bone biology: clinical need

- Children with rheumatic disease (SLE, JIA, JDM) have decreased bone mineral density and potentially lowered peak bone mass
 - Peak bone mass attained during adolescence is critical in determining adult fracture risk

- Challenges diagnosing osteopenia/osteoporosis in children
 - Pediatric-based references for DXA
 - Role of quantitative computed tomography (QCT)
 - Role of US

Bone biology: knowledge gaps

- Bone density assessment
 - Misinterpretation due to adult norms
 - What modality to use for assessment?
 » DXA still gold standard, but what is role of US and QCT?
 - Frequency of monitoring for safety/cost effectiveness?

Bone biology: knowledge gaps

- **Treatment for osteoporosis**
 - Evidence suggests long term safety and efficacy of bisphosphonates in children
 - Pediatric PK studies of zoledronic acid and OI (FDA website)
 - Studies specific to steroid use in children with rheumatic disease showed sustained increase in BMD and well tolerated
 - Binding to bone and prolonged renal excretion (7 yrs) raises long term safety concerns

Bone biology: knowledge gaps

- Prevention of osteoporosis
 - Role of bisphosphonates in conjunction with glucocorticoids
 - More aggressive use of steroid sparing agents
 » Impact of disease activity vs. glucocorticoids on BMD
Bone biology: recommendations

- RCT administering a single dose of bisphosphonate in patients started on long term steroids with DXA monitoring at 3, 9, 15 and 24 months
 - Incorporate QCT, US in addition to DXA
 » Effect of bisphosphonates on bone loss
 » Safety
 » Appropriate frequency of BMD monitoring
 » Compare imaging modalities
PEDIATRIC SYSTEMIC LUPUS ERYTHEMATOSUS
15-20% of all SLE starts in childhood
Worse in children
 - higher disease severity
 - more organ involvement, especially renal
 - longer burden of disease
 - noncompliance

Immune system not mature
Stronger genetic component
Growth and body image issues
pSLE: background

- Wide variability in treatment
- CARRA consensus treatment plan for nephritis induction therapy
 - Pilot comparing standard NIH protocol with cyclophosphamide vs mycophenolate with three different steroid regimens is underway
- High rate of complications, short and long term, with current therapies
 - Corticosteroids
 - Cyclophosphamide

pSLE: clinical need

- No clinical trials in primary pSLE treatment
- No drugs specifically indicated for pSLE
- No outcome measures designed specifically for pSLE
- Reduce lifetime exposure to corticosteroids and cyclophosphamide
pSLE: knowledge gaps

- Lowest effective cyclophosphamide dose
- Treatment of refractory pSLE
- Treatment of extra-renal lupus, particularly neuropsychiatric lupus
- Pediatric dose, effectiveness, and safety of hydroxychloroquine
Clinical trial comparing efficacy of Euro Lupus protocol (low dose) vs. NIH protocol (high dose) for pediatric proliferative nephritis induction.

- Provide efficacy and safety data not currently available for the most commonly used regimen in children.
- Need to establish pediatric dosing Euro-lupus protocol.
Clinical trial comparing the safety and efficacy of IV methylprednisolone with cyclophosphamide, mycophenolate, and rituximab in pSLE-induced seizures and cerebral vascular events
 - Utilize interferon signature, other biomarkers as well as standard clinical outcome measures

Support for CARRA CTPs comparing corticosteroid dosing regimens
Used off label for several pediatric rheumatic diseases
 - pSLE, primary Sjogren’s, drug-induced SLE, JDM, JIA

Use CARRA Registry to study safety
 - Add on PK studies to develop age-appropriate dosing

Develop a liquid formulation and/or smaller tablets to facilitate weight-based dosing
pSLE: recommendations

- Develop pSLE specific disease activity measure using data collected from CARRA Registry
JUVENILE FIBROMYALGIA
Juvenile fibromyalgia: background

- Chronic pain common in pediatrics
 - 25% of new patients seen by pediatric rheumatologists

- Big Three
 - Headaches, musculoskeletal pain, abdominal pain

- 25-40% of children with chronic pain meet criteria for fibromyalgia

- 1-6% prevalence depending on study

- Studies suggest long-term pain problems

Juvenile fibromyalgia: background

- 2005 APS consensus management guidelines
 - modifications based on the children’s age, developmental level, and social environment (eg, less medication)

- **Age-appropriate** outcome measures exist
 - Pain, quality of life, anxiety, functional disability, etc

- **Difficulty identifying patients for studies**
 - Previously treated off-label
 - Present to a variety of specialists
 - Case definition issues
 - Overlap with other conditions
Subcommittee decided not to address purely analgesic drugs

Based recommendations for study of drugs based on

- Proposed mechanism of action relative to proposed pathophysiology
- Drug availability and cost, coverage by Medicaid and third-party payers
- Lack of pediatric labeling
- Unlikelihood of industry development
Juvenile fibromyalgia: clinical need

- No medications labeled for use in juvenile fibromyalgia.
- No studies looking at drug treatment.
- Drugs commonly used off label in children and adolescents with fibromyalgia, particularly amitriptyline and venlafaxine.
Juvenile fibromyalgia: knowledge gaps

- Amitriptyline and venlafaxine best met the criteria the subcommittee outlined
 - No data on efficacy of either agent in juvenile fibromyalgia
 - No good PK/PD/PG data for either agent in pediatrics
 - No data looking at the concentration of the active moiety of the parent plus the active metabolite in pediatric patients
 - Used off label in pediatric headache and abdominal pain
Juvenile fibromyalgia: recommendations

- Clinical trials testing the efficacy of amitriptyline and venlafaxine in pediatric fibromyalgia
 - PG-aided PK study design
 - PK study on core metabolizers and extensive metabolizers