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Histology-based cellular composition and tissue architecture provide the biological basis for the brain’s cytoarchitectonic areas and for characterizing

neuropathology. Noninvasive methods to assess cortical cyto- and myeloarchitectonic features are therefore urgently needed. In an ex vivo human brain

study, we used multidimensional di�usion-relaxation MRI to investigate changes in spectral signatures with cortical depth. We designed an unsupervised

segmentation procedure that captures this information and provides cortical laminar maps, which were co-registered to histological images and

compared. The ability to map cortical cytoarchitectonic features noninvasively makes multidimensional MRI a promising tool for studying whole-brain

cortical organization.

Introduction
Gray matter (GM) architecture and neuroanatomical regions are largely de�ned by the cortical layers, which play a critical role in development and

connectivity, and which a�ect brain function and pathology. However, current noninvasive techniques for characterizing the GM laminar composition

remain inadequate.  Although MRI currently cannot provide the exquisite microscopic resolution that optogenetic methods like Brainbow do,  chemical

and microstructural information encoded simultaneously via relaxation (T  and T ) and di�usion mechanisms provides a wealth of sub-voxel

morphological and compositional features.  Recent advances in multidimensional MRI yield high-dimensional image data, in which each voxel may

contain a 2- or higher dimensional distribution encoding the correlation of the investigated MR properties.

To date, de�ning cortical lamina is only possible cytologically. We hypothesize here that voxelwise multidimensional T -T -di�usion distributions change

across the width of the human cortex, and that these changes correspond to the known laminar structure. We propose the use of a modi�ed

Wasserstein distance, which arises from the idea of optimal mass transport,  to be used as a novel distance measure between multidimensional spectra.

Based on this distance measure, we then design and implement an unsupervised segmentation procedure to derive the cortical layers from

multidimensional MRI data.

Methods
We investigated �xed ex vivo cerebral cortical tissue specimens without any known pathology derived from three control brain donors (ages 48,30,83

years). Multidimensional MRI T -T , T -di�usion (T -MD), and T -MD data with 56, 302, and 302 images, respectively, using an inversion-recovery di�usion

EPI sequence, were acquired at 200µm isotropic resolution on a 7T Bruker MRI scanner according to a previously published sampling scheme.  Data

were denoised,  and then processed as previously described.  Tissue specimens were then sectioned serially into 5µm-thick sections at 100µm

intervals. Sections were Nissl stained to visualize cell nuclei and were used to train a deep learning convolutional neural network (DenseNet, HALO AI,

New Mexico, USA) for histological tissue classi�cation into cortical regions based on the expression patterns of the di�erent layers: layer I (molecular

layer), layer II (external granular layer), layer III (external pyramidal layer), layer IV (Internal granular layer), layer V (internal pyramidal) and layer VI

(multiform layer). The histological and MRI datasets were co-registered using previously published methods.

All voxelwise T -T , T -MD, and T -MD spectra were smoothed using a Gaussian �lter with a small o�set added such that the signals were all strictly

positive. For each subject, a within-subject reference density was calculated from the relaxometry-di�usometry spectra across all voxels by computing

the Euclidean mean. Pairwise linear optimal transport (LOT) distances were computed  for each spectrum  with respect to this common reference 

for all  voxels across the three-dimensional volume within each individual high-dimensional brain image. All computations were performed in MATLAB

(Mathworks, USA).

Results
Unsupervised learning using k-means clustering was performed in the modi�ed 2-Wasserstein metric space. Clustering was done in two steps: �rst,

segmenting gray and white matter, and background noise (Figure 1). And next, segmenting the GM further into cortical lamina using six clusters to re�ect

the number of known cortical layers in the human cortex. Each k-means clustering step was iterated 100 times with random initializations according to

the K-means++ algorithm.

Figures 2-4 show representative slices across three di�erent subjects of MRI- and histology-based cortical lamina segmentation (panels a and b). Visual

inspection con�rms that although not perfectly aligned due to limitations in registering MRI and histological data, the unsupervised MRI- and histology-

based laminar segmentations exhibited similar trends. The pairwise LOT distance between each cluster centroid is summarized in a confusion matrix,

shown in panel c. In general, clusters that are radially contiguous have centroids that are more similar in the metric space. For example, clusters 1,5,6

mutually have lower LOT distances between their centroids than to clusters 2,3, and 4 for Subject 1. Similar patterns are seen in Subjects 2 and 3.

In addition, the cluster mean distributions were visualized in panel d to investigate the spectral signatures of each cluster. From the outermost GM layer

to WM, a gradual shift towards shorter T  and T  values, as well as the emergence of slow di�usivity and short T  components, are evident.

To enable comparisons between the multidimensional MRI laminar segmentations and conventional MRI sequences used in clinical practice, scalar maps

of T , T , fractional anisotropy (FA), radial, axial, and mean di�usivities were calculated. The same k-means clustering procedure was executed to identify

discrete clusters using these scalar metrics as features (Figure 5).
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Discussion
By harnessing the rich information content probed via multidimensional MRI and combining it with optimal mass transport-based unsupervised learning,

we demonstrate mapping of GM laminar composition. The MRI-based maps delineate contiguous cortical lamina based on spectral signatures captured

by multidimensional MRI agnostic spatial location. We observed a pronounced slow di�usivity component in subcortical WM that progressively

diminishes toward the cortical surface, possibly indicating a change in cellularity. These novel maps, together with histological validation, suggest that

each cortical layer contains a unique microstructural signature that can be measured using multidimensional MRI. In the future, this approach can be

used to investigate a multitude of pathologies involving the human cortex to which clinical MRI sequences are insensitive.
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Figure 1. Cortical lamina segmented by k-means clustering in the 2-Wasserstein space: white matter, deep lamina, and super�cial lamina for (a) Subject 1,

(b) Subject 2, and (c) Subject 3.

Figure 2. Subject 1: (a) cortical lamina segmented by k-means clustering in the 2-Wasserstein space. (b) The segmented Nissl-stained histology images are

shown side-by-side. (c) Pairwise 2-Wasserstein distance between each cluster centroid. (d) Per-cluster mean T1-T2, T1-MD, and T2-MD distributions.

Figure 3. Subject 2: (a) cortical lamina segmented by k-means clustering in the 2-Wasserstein space. (b) The segmented Nissl-stained histology images are

shown side-by-side. (c) Pairwise 2-Wasserstein distance between each cluster centroid. (d) Per-cluster mean T1-T2, T1-MD, and T2-MD distributions.
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Figure 4. Subject 3: (a) cortical lamina segmented by k-means clustering in the 2-Wasserstein space. (b) The segmented Nissl-stained histology images are

shown side-by-side. (c) Pairwise 2-Wasserstein distance between each cluster centroid. (d) Per-cluster mean T1-T2, T1-MD, and T2-MD distributions.

Figure 5. K-means clustering results based on T1, T2, FA, radial, axial, and mean di�usivities scalar maps for (a) Subject 1, (b) Subject 2, and (c) Subject 3.
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