A single-shot measurement of sub-millisecond, time-dependent diffusion using optimized, unequal pulse spacings in a static field gradient

Teddy X. Cai1,2, Nathan H. Williamson1,3, Velencia J. Witherspoon1, Rea Ravin1, Peter J. Basser1
1 Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health
2 Wellcome Centre for Integrative Neuroimaging, University of Oxford
3 National Institute of General Medical Sciences, National Institutes of Health

A publication detailing this work is available at: J. Chem. Phys. 154, 111105 (2021); 10.1063/5.0041354

INTRODUCTION

• Time-varying diffusion – i.e., non-linear time-dependence in the net mean-squared displacement (MSD) – is ubiquitous in biological systems.

• Oscillating gradient waveforms can be used to directly probe the time-varying diffusivity [1].

• Usually, the echo intensity is related to the spectrum of the time integral of the gradient waveform, \(F(\omega) \), and of the velocity autocorrelation function, \(2D(\omega) \):

\[
\frac{I(T)}{I_0} = \exp\left(\frac{1}{\pi} \int_0^\infty F^T(\omega) D(\omega) F(\omega) d\omega\right)
\]

• On conventional scanners, however, oscillating gradient methods are limited to \(\omega \sim 100 \) Hz and probe just one timescale per scan.

Here, we ask:

1) Can an NMR method probe short times (< 1 ms)?
2) Can the method be performed quickly (~ 1 min)?

PULSE SEQUENCE DESIGN

• Permanent magnet setups (i.e., single-sided NMR) can produce strong, static field gradients (SG) [2].

• A \(\pi \)-pulse train (CPMG) under a strong SG can produce a triangle wave \(F(t) = \gamma \int_0^T G(t) dt \) that is sensitive to times < 1 ms [3], as desired. But ...

• Many off-resonance coherence transfer pathways (CTPs) are excited [4].

\[
F(t) \quad \text{RF} \quad \tau \quad \omega \quad \pi \quad \tau \quad \omega
\]

Fig. 1: Triangle wave \(F(t) \) produced by the SG-CPMG sequence. The associated \(F(\omega) \) focuses near \(\omega = 2\pi/\tau \) over many cycles.

• We can kill two birds with one stone: Unequal \(\pi \)-pulse spacings may be used to avoid off-resonance CTPs and to probe a range of diffusion times.

• We choose the discrete spacing: \(2\tau + m_\delta \delta \), with unit increment \(\delta \) to produce a (roughly) chirped \(F(\omega) \).

• We term this the SG, time-incremented echo train acquisition (SG-TIETA). Using SG-TIETA, each pair of adjacent echoes is spaced differently.

\[\text{RF} \quad \tau \quad 2\tau + m_\delta \quad \ldots \quad m_\delta \quad \ldots \quad m_\delta \quad \delta \quad \ldots \quad m_\delta \quad \delta \quad \ldots \quad m_\delta \quad \delta \]

Fig. 2: Example SG-TIETA sequence with \(\tau = 45 \) and \(m_\delta = \{1,3,1,2,1\} \). Various off-resonance CTPs which refocus (red, dashed) and do not refocus (gray, dotted) are shown.

• Based on a derived ruleset, we propose a sequence that is optimized to avoid off-resonance CTPs:

\[
\tau = 49 \mu s, \quad \delta = 14 \mu s
\]

\[
m_\delta = \{1,3,6,7,10,12,11,15,20,21,24,26,20,21,33,35,33,34,33,\ldots\}
\]

To analyze these SG-TIETA decays, we developed a pulse accuracy correction, \(1/\Pi_1 A_p(\tau) \), where the function \(A_p(\tau) \) describes signal loss at each \(\pi \)-pulse.

• We also used a signal representation [5] in the (1-D) instantaneous diffusivity, \(D_{\text{inst}}(t) \), which is half of the time derivative of the MSD in the gradient direction.

\[
D_{\text{inst}}(t) = \frac{1}{2} \frac{d}{dt} D_{\text{ MSD}}(t)
\]

\[
\text{In sum, a method to rapidly probe diffusion times from 50} - 500 \mu s \text{ is validated on yeast and simple fluids.}
\]

EXPERIMENTAL RESULTS

• Experiments were performed using a PM-10 NMR-MOUSE [2] with a SG amplitude of 15.3 T/m.

• Calibration \(A_p(\tau) \) values were obtained on simple fluids – 1-octanol, decane, and water – and were consistent across varying diffusivities.

• SG-TIETA decays for yeast and another simple fluid, D6, were signal averaged 32 \(\times \) and analyzed.

\[\begin{array}{ccc}
\text{a [\mu m], } & \text{b [mm/s]} \\
\hline
\text{a = 2.5, } & \text{b = 0} \\
\text{a = 2.8, } & \text{b = 0.3} \\
\text{a = 2.8, } & \text{b = 0.8} \\
\text{a = 1.4, } & \text{b = 0} \\
\text{a = 1.4, } & \text{b = 0.3} \\
\text{a = 1.4, } & \text{b = 0.8} \\
\end{array}\]

Fig. 3: Summary of results. (a) SG-TIETA decays plotted vs. the cumulative b-value for different experimental samples. (b) Inverted \(D_{\text{inst}}(t) \) curves. The yeast curves are compared to the theoretical short-time behavior [6] for mean pore size \(a \) and permeability \(\kappa \).

References