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We propose a practical new framework for mapping non-parametric di�usion tensor distributions (DTDs). For di�usion MRI data with su�ciently high
spatial resolution, we can constrain all microscopic di�usion tensors of the DTD to be diagonalized using a single orthonormal reference frame estimated
from the entire mesoscopic voxel. The constrained DTD is determined by the correlation spectrum of the corresponding microscopic principal
di�usivities and can be measured very e�ciently using Inverse Laplace Transform methods and single di�usion encoded measurements. cDTD spectral

components measured in cortical tissue show good sensitivity to cytoarchitectonic domains and reveal lamination patterns observed in corresponding
histological images.

Introduction
High-resolution cortical di�usion MRI (dMRI) studies  have consistently shown that water di�uses preferentially along radial and tangential orientations
with respect to the cortical surface , in agreement with histological assessments of tissue microarchitecture . These dominant orientations do not
change signi�cantly when the relative contributions of subvoxel water pools vary in experiments with di�erent di�usion times, b-values, TEs, TRs .
Moreover, at ultra-high spatial resolutions (<700µm) the intravoxel orientation dispersion of the di�usion tensors associated with these microscopic

pools is signi�cantly decreased (Fig. 1). With this in mind, we propose a practical new framework, called COnstrained Reference frame di�usion TRnsor
Correlation Spectroscopic (CORTECS) MRI. The framework simpli�es the measurement of di�usion tensor distribution (DTD)  from high-resolution dMRI
data by constraining the microscopic di�usion tensors of the DTD to be diagonalized using the same orthonormal reference frame of the mesoscopic

voxel (Fig. 2). In each voxel, the constrained DTD (cDTD), determined non-parametrically by the correlation spectrum of the microscopic principal
di�usivities associated with the axes of the voxel reference frame, can be estimated e�ciently using Inverse Laplace Transform (ILT) methods from only
data acquired with single di�usion encoding (SDE).

Theory and Methods
The DTD in each voxel, p(D), depends on the net di�usion-weighted voxel signal, S, and the encoding b-tensor, b:

In tissues with well-organized microstructure, such as the cortex, if the voxel is signi�cantly smaller than the radius of curvature of the macroscopic

anatomy, R, (e.g., cortical folding), the intravoxel orientational dispersion decreases signi�cantly (Fig. 1). If we constrain the di�usion tensor random
variable, D, to be diagonalized by a �xed orthonormal voxel reference frame (Fig. 2), de�ned by the principal axes of di�usion measured in the entire
voxel, , we can write Eq. 1 as the Laplace Transform of the principal di�usivities measured along these orientations:

The measured cDTDs are completely de�ned by the correlation spectrum of the principal di�usivities and can be estimated using conventional ILT
methods and SDE data. If the tissue architecture varies along a single dominant orientation, we can describe the cDTDs more e�ciently as a correlation

spectrum of radial and tangential di�usivities,  and , respectively. For SDE data, the signal equation is: 

, where  is the angle between the orientation of the applied di�usion gradient, , and the principal di�usion direction, .

We conducted Monte Carlo simulations using 3D and 2D cDTDs. Starting from ground-truth distributions with multiple peaks we generated signals using
the same experimental design as in our �xed brain experiment and added multiple instances of noise. We compared the mean estimated normalized

cDTDs with the ground truth distributions, for di�erent levels of noise. 

We acquired high-resolution dMRI data from a perfusion-�xed macaque brain with 200µm resolution, TE/TR=50/650ms, 112 SDE DWIs with multiple b-
values and orientations. Using Eq. 3, we measured non-parametric 2D cDTDs, , and corresponding marginal distributions. To quantify the cDTD

size-shape characteristics we derived 2D correlation spectra of microscopic FA (µFA) and MD values and their marginal distributions. Finally, we
integrated the cDTDs over empirically-de�ned spectral domains to quantify subvoxel signal components with distinct di�usion properties.
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Results
MC simulation results show that CORTECS MRI can disentangle multiple subvoxel di�usion tensor processes that are aligned in the same voxel reference

frame based on di�erences in the correlations of their principal di�usivities using only SDE measurements (Fig. 3). While the locations and
concentrations (i.e., areas under the peaks) of individual signal components (peaks) can be estimated reliably over a wide range of SNRs.

In cortical gray matter, cDTDs reveal the presence of microscopic di�usion processes with distinct joint  properties (Fig. 4). cDTDs with di�erent
mixtures of isotropic (close to the diagonal ) and anisotropic (o�-diagonal) microscopic di�usion components have high speci�city to cortical
domains and layers (Fig. 4B) and are in good agreement with the corresponding histology.

Maps of 2D µFA-MD correlation spectra (Fig. 5) provide a tally of the shape-size characteristics of di�usion tensors in subvoxel/microscopic water pools
as a new means to characterize tissue microstructure. Large concentrations of isotropic di�usion processes (µFA<0.18) were observed in the upper
cortical layers, and to a lesser extent, in layer 5. The most anisotropic di�usion processes (µFA>0.35) were localized in the mid-cortical layers and in
subcortical white matter. The �ve tissue components with µFA-MD properties de�ned by the colored outlines in Fig. 5B show laminar patterns consistent

with histology (Fig. 4)

Discussion and Conclusion
In tissues with consistent, well-de�ned architecture, CORTECS MRI greatly simpli�es the data acquisition and spectral reconstruction requirements for

high-resolution DTD MRI and can subsume many multi-tensor di�usion models. It reduces the dimensionality of non-parametric DTD MRI, allowing
robust estimation of non-parametric cDTDs without the need for statistical reconstruction methods  or multiple di�usion encoding acquisitions ,
which are challenging in clinical practice. Given recent advances in the acquisition e�ciency of high-resolution dMRI data , CORTECS MRI could

provide a practical approach to non-parametric quantitation of microstructural tissue heterogeneity.
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Figure 1: A. When the voxel size, x, is small relative to the radius of curvature of the tissue, R, e.g., cortical folding, the range of intravoxel orientational
dispersion θ  due to the continuously varying microstructural reference frame decreases. B. The value of θ  decreases rapidly at low spatial

resolutions, R/x, but changes very slowly at higher spatial resolutions, R/x. C. A quantitative comparison of θ  at di�erent voxel sizes assuming a
cortical radius of curvature R=5mm shows a signi�cant reduction in θ  at high spatial resolution.

Figure 2: At the mesoscopic scale the cortical microstructure is organized along radial and tangential orientations (A). CORTECS MRI (B) constrains all
microscopic tensors to have the same principal di�usion axes (C) and quanti�es the 3D correlation spectra of their corresponding principal di�usivities

(D). A DTD that contains axisymmetric tensors (F) can be described e�ciently with the 2D correlation spectrum of λ  and λ  (G). The µFA-MD distribution
derived from 3D (E) and 2D (H) cDTDs quanti�es the shape-size distribution of subvoxel di�usion processes.
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Figure 3: Monte-Carlo simulation results illustrating the accuracy and numerical stability of the 3D cDTD reconstruction as a function of SNR for a mixture
of 3 multivariate log-normal distributions, re�ecting the presence of 3 microscopic water pools with distinct di�usion tensor properties. For various SNRs,

log-log-log plots of mean normalized p(λ ,λ ,λ ) (A) log-log plots of corresponding mean normalized 2D marginal distributions (B,C,D) and log plots of the
corresponding mean normalized 1D marginal distributions (E,F,G). H: An example of the ground truth DTD tensors.

Figure 4: A. Spectral component maps of normalized 2D correlation spectra of radial and tangential di�usivities in a section of the cortex. Top row:
Spectral component maps of the normalized 1D marginal distribution of λ ; Left column: Spectral component maps of the normalized 1D marginal

distribution of λ ; B. Tissue component maps derived by integrating the 2D cDTD spectral components over empirically de�ned spectral regions of
interest delineated with di�erent colors. C. Corresponding �ber orientation distributions (FODs). D. Corresponding SMI-32-stained section.

Figure 5: A. Spectral amplitude maps of normalized 2D µFA-MD correlation spectra in the section of the cortex from Fig. 4. Top row: Spectral component
maps of the normalized 1D marginal distribution of microscopic fractional anisotropy, µFA; Left column: Spectral component maps of the normalized 1D
marginal distribution of the microscopic di�usion tensor mean di�usivities. B. Tissue component maps derived by integrating the 2D µFA-MD

distributions over empirically de�ned spectral regions reveal strong contrast in the mid-cortical areas.
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