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INTRODUCTION: Diffusion MRI is a unique noninvasive imaging technique capable of quantifying and visualizing the angular distribution and the anisotropy of the 
white matter fibers. Several approaches such as diffusion tensor imaging, q-ball imaging (QBI), spherical deconvolution and many others high angular resolution 
diffusion imaging (HARDI) have been proposed to describe the angular distribution of the white matter fibers within a voxel. The analytical QBI technique [1] uses a 
predetermined regularization parameter [2] (λ = 0.006), which has been well adopted in many clinical studies. Although there are well-known strategies, e.g., the 
generalized cross-validation (GCV) [3-5] or the L-curve [6], for selecting the optimal regularization parameter λ, the predetermined regularization parameter was 
adopted for reasons related to practical and computational efficiency based on L-curve simulations [2]. Here, we incorporate the GCV technique into the analytical q-
ball formalism. We compare and contrast the fixed λ-regularization parameter (“Fixed λ”) and the automatic GCV-selected optimal λ-regularization (“GCV-based λ”), 
for estimating diffusion MRI data. We also discuss the potential consequences of our work on quantitative HARDI anisotropy measures and tractography studies. 
METHODS AND RESULTS: The GCV technique is incorporated into the analytical q-ball formalism by extending the work of [5], using the spherical harmonics 
(SH) basis. First, the diffusion-weighted (DW) signals are regularized with the “Fixed λ” with λ = 0.006 and with optimal “GCV-based λ” found for each voxel, 
detailed in [9]. Then, the q-ball is estimated via the analytical Funk-Radon transform, detailed in [1]. In this work, we use SH order 6 to reconstruct the q-balls from 
DW data obtained on a 3T system, with 60 encoding directions, averaged three times per direction, seven b = 0 images, b = 1000 s/mm2, 72 slices with isotropic 1.7 mm 
resolution, 128x128 image matrix, TE = 100 
ms, and TR = 12s [8]. The Gaussian noise 
standard deviation of this dataset was 
estimated to be approximately 5.07, as 
determined through the automatic method 
PIESNO [9].  The underlying SNR of a 
representative region-of-interest (ROI) of a 
T2 image was about 25.7 [10]. The value of  
SNR was adopted into our simulation study,  
described below. Fig.1 shows the optimal λ
map as determined by the GCV-based  
technique. The colormap is different for  
each subfigure. The λ-map shows that the 
values of the optimal λ is spatially and  
anatomically dependent, and not equal to λ  
= 0.006 everywhere.  λ = 0.006 is a good  
trade-off between smoothness and angular  
resolution of  q-balls with crossing fibers [2].  
This is confirmed in 2-crossing regions 
(Fig1b) with values approximately equal to 
0.006. However, the fixed λ is overestimated  
for single fiber parts(Fig.1a) and
underestimated for  more complex fiber parts  
(Fig.1c). This is reflected by an increase of  
generalized fractional anisotropy (GFA) [7] 
in single fiber parts and a GFA decrease in  
complex regions (Fig1d-f) using optimal λ. 
To study the dependence of  λ  on the fiber  
configuration, a multi-tensor simulation was set up with three distinct fiber 
configurations, (1, 2 and 3 orthogonal crossing fibers), to test the statistical 
performance of QBI. Two quantitative measures were used in this study—the relative  
error in estimating the GFA and the dispersion of fiber directions. In quantifying the 
dispersion of fiber directions, we use the mean squared error in degrees between the  
ground truth fiber directions and the estimated fiber directions from the q-ball 
maxima. In Fig.2, we first note that, as the fiber configuration is more complex (from  
1 to 3 fibers), the relative GFA error is considerably reduced using optimal GCV-
based λ (blue curves). We also note that the fiber dispersion experiment reveals very  
similar behavior between the Fixed-λ and the optimal GCV-based λ regularization. 

­

a) λ-map (0–0.006), single fiber part 
highlighted 

b) λ-map (0.004–0.008), voxels with 
crossing voxels highlighted 

c) λ-map (0.006-0.1) and T1 
highlighting parts of gray nuclei 

d) GFAλ-optimal-GFAλ-fixed < 0, 
showing an increase in GFA in the 
single fiber parts using optimal λ

e)-0.005 < GFAλ-optimal-GFAλ-fixed 
< 0.005, showing nearly equal GFA 
in crossing areas. 

f) GFAλ-optimal-GFAλ-fixed > 0, 
showing a decrease in GFA in the 
gray nuclei using optimal λ

# of 
fibers 

Relative error in estimating the 
GFA 

Dispersions in the maxima of 
the q-ball ODF 

GCV-based λ Fixed λ
1 

0.93º±0.78º 0.83º±0.67º 

2 

1.92º±2.9º 1.78º±2.89º 

3 

2.01º±3.6º 1.94º±3.6º 

DISCUSSION AND CONCLUSION: In this work, we have presented the 
analytical QBI with optimal GCV-based regularization. The method is the optimal  
extension of analytical q-ball imaging with fixed regularization λ = 0.006 [1]. We  
have shown two important results.  1) GFA seems indicative of shape variation in  
QBI and GCV-based λ shows a distinct advantage when the underlying structure is  
complex and in single fiber  parts of real data. Hence, this suggests that optimal GCV-
based λ is important for anisotropy  measure studies using HARDI. 2) The Fixed-λ  
and GCV-based λ are comparable when looking at the dispersion of q-ball maxima. This is reassuring and suggests that tractography results from the two approaches 
will produce similar results. This can be explained by the intrinsic smoothness of the QBI technique and the fact that Funk-Radon tranform is robust to noise because it 
performs DW signal averaging, i.e., the integral along the great circle. This similarity between the q-ball directions from Fixed-λ and GCV-based λ will most likely be 
different when a sharper reconstruction technique is employed. Although we have focused on QBI, the optimal GCV regularization can be applied to any method using 
a SH estimation of the DW signal (e.g. high order tensor [6], spherical deconvolution [4], diffusion orientation transform [11], exact QBI [12,13,14]). 
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