

Outline

Background Maternal dietary factors and early child growth Adolescent diets and nutrition status Research questions

Food systems and the double burden of malnutrition

- 768M people are hungry (SOFI, 2021)
- 3 Billion people cannot afford a healthy diet globally (Herforth et al, 2020, SOFI 2021)
- Nutrition and dietary transition: food value chains and diets rapidly shifting in LMICs - processed, refined, fast foods (Popkin et al, 2014)
- Sub-optimal diets #1 risk factor for mortality [Murray et al, 2020]
 - 11M deaths attributed to dietary risk factors (Afshin et al (GBD), 2019)
 - Diet-related chronic diseases: obesity, diabetes, hypertension, cardiovascular diseases, diet-related cancers

Globally accepted measures of diet quality for women, children or adolescents?

1. Dietary diversity as a proxy measure of diet quality in LMICs?

Gap: Does not capture global dietary transition and consumption of unhealthy foods

- 2. Measurement [Alkerwi et al, 2014; Trijsburg et al, 2019]
 - a) nutrient adequacy/food variety or food diversity
 - b) moderation saturated fat, sodium, sugar, nutrients associated with excess disease risk
 - c) **balance** energy-yielding macronutrients
- 3. Gaps: Varying definitions; Tools and metrics not validated in LMICs adolescents, children

Source: EAT-Lancet Commission, 2020

Maternal dietary factors and early child growth

Issues More Content ▼ Submit ▼ About ▼ Purchase Advertise ▼

Q

Volume 112, Issue 3 September 2020

Maternal dietary diversity and dietary quality scores in relation to adverse birth outcomes in Tanzanian women

Isabel Madzorera ▼, Sheila Isanaka, Molin Wang, Gernard I Msamanga, Willy Urassa, Ellen Hertzmark, Christopher Duggan, Wafaie W Fawzi

The American Journal of Clinical Nutrition, Volume 112, Issue 3, September 2020, Pages 695–706, https://doi-org.ezp-prod1.hul.harvard.edu/10.1093/ajcn/nqaa172

Published: 11 July 2020 Article history ▼

Study in Dar es Salaam, Tanzania among 8,428 pregnant women, 12-27 weeks gestation

Dietary intake: Repeated 24-hour dietary recalls during pregnancy

FAO Minimum Diet Diversity Index - Women (MDD-W)

Composed of 10 food groups

MDD-W

Starchy staple foods

Beans and peas

Nuts and seeds

Dairy

Eggs

Flesh foods

Vitamin A-rich dark green leafy

vegetables

Other vitamin A-rich vegetables and

Fruits

Other vegetables

Other fruits

Validated for micronutrient adequacy

 Vit A, thiamin, riboflavin, Vit B6, B12, folate, zinc, calcium

[Martin-Prével et al, 2015 Arimond et al, 2010]

- Gap:
 - MDD-W measures one aspect of diet quality (micronutrient adequacy)
 - Does not capture global dietary transition and consumption of unhealthy foods in LMICs

Women in q5 of MDD-W had 26% lower risk of SGA vs. q1 in Tanzania

	Quintile 1	Quintile 2	Quintile 3	Quintile 4	Quintile 5	Р
Clinical Outcome	RR (95% CI)	RR (95% CI)	RR (95% CI)	RR (95% CI)	RR (95% CI)	trend
DDS Median (IQR)	2.0 (2.0-2.3)	2.5 (2.5-2.7)	3.0 (3.0-3.0)	3.5 (3.3-3.5)	4.0 (4.0-4.5)	
Preterm birth (<37 weeks ge	station)					
n/N	252/1550	201/1428	344/1765	149/1362	206/1448	
Univariate	ref	0.87 (0.73,1.03)	1.20 (1.03,1.39)*	0.67 (0.56,0.81)*	0.88 (0.74,1.04)	
Multivariate		0.87 (0.74,1.04)	1.24 (1.06,1.44)*	0.72 (0.60,0.88)*	0.97 (0.82,1.16)	0.24
Small for gestational age (<1	Oth percentile for gest a	ige/sex)				
n/N	245/1400	231/1284	266/1601	207/1221	171/1318	
Univariate		1.03 (0.87,1.21)	0.95 (0.81,1.11)	0.97 (0.82,1.15)	0.74 (0.61,0.89)*	
Multivariate		1.01 (0.86,1.19)	0.95 (0.81,1.11)	0.97 (0.82, 1.15)	0.74 (0.62,0.89)*	<0.01*
Low birth weight (<2,500 gra	nms)					
n/N	114/1458	71/1359	107/1641	71/1287	85/1373	
Univariate		0.67 (0.50,0.89)*	0.83 (0.65,1.08)	0.71 (0.52,0.94)*	0.79 (0.60,1.04)	
Multivariate		0.66 (0.50,0.88)*	0.84 (0.65,1.08)	0.70 (0.53,0.94)*	0.80 (0.61,1.04)	0.11
Fetal loss (Spontaneous abo	rtion, stillbirth)					
n/N	46/1550	34/1428	72/1765	41/1362	45/1448	
Univariate		0.80 (0.51,1.24)	1.37 (0.96,1.98)	1.01 (0.67,1.53)	1.05 (0.70,1.57)	
Multivariate		0.73 (0.46,1.15)	1.37 (0.95,1.98)	0.90 (0.58,1.40)	0.95 (0.62,1.45)	0.96

^{*} p <0.05; The median DDS during pregnancy was 3.0 (IQR: 2.5–3.5); Mean BMI (Q1vQ5: 24.4 v 24.8); 16.4% SGA

Prime diet quality score (PDQS)

21 food groups (score range 0-42)

Healthy (14)

dark green leafy vegetables other vit A rich vegetables

cruciferous vegetables other vegetables

whole citrus fruits other fruits

fish poultry

legumes nuts

low fat dairy whole grains

eggs liquid vegetable oils

Unhealthy (7)

red meat processed meats
refined grains and baked goods sugar sweetened beverages
desserts and ice cream fried foods away from home
potatoes, roots and tubers

PDQ3	
Healthy food groups:	Unhealthy food groups:
0–1 serving/week (0 points)	0–1 serving/week (2 points)
2–3 servings/week (1 point)	2-3 servings/week (1 point)

Evidence for:

≥4 servings/week (2 points)

DDOS

- Cardiovascular disease [Fung et al, 2018; Alvarez-Alvarez et al, 2020]
- Gestational diabetes, hypertensive in pregnancy [Gisevic et al, 2018]

≥4 servings/week (0 points)

Women in q5 of PDQS had <u>45% lower risk of preterm</u> and <u>47% lower risk</u> of LBW and fetal loss vs. women in q1 in Tanzania

	Quintile 1	Quintile 2	Quintile 3	Quintile 4	Quintile 5	P
Clinical Outcome	RR (95% CI)	RR (95% CI)	RR (95% CI)	RR (95% CI)	RR (95% CI)	trend
PDQS Median (IQR)	16.0 (15.0-16.0)	18.0 (17.0-18.0)	19.0 (19.0-19.0)	20.0 (20.0-20.0)	22.0 (21.0-23.0)	
Preterm birth 2 (<37 weeks ge	station)					
n/N	338/1732	347/2194	133/1022	192/1215	142/1390	
Univariate	ref	0.81 (0.71,0.93)*	0.67 (0.55,0.80)*	0.81 (0.69,0.95)*	0.52 (0.44,0.63)*	
Multivariate		0.82 (0.71,0.93)*	0.66 (0.55,0.80)*	0.82 (0.70,0.96)*	0.55 (0.46,0.67)*	<0.001**
Small for gestational age 3 (<10	Oth percentile for gest a	age/sex)				
n/N	264/1605	338/1971	149/906	187/1110	182/1232	
Univariate		1.04 (0.90,1.21)	1.00 (0.83,1.20)	1.02 (0.86,1.22)	0.90 (0.76,1.07)	
Multivariate		1.04 (0.90,1.21)	0.97 (0.81,1.17)	1.01 (0.85,1.19)	0.91 (0.77,1.08)	0.26
Low birth weight 4 (<2,500 gra	ams)					
n/N	145/1606	124/2067	56/962	58/1149	65/1334	
Univariate		0.66 (0.53,0.84)*	0.64 (0.48,0.87)*	0.56 (0.42,0.75)*	0.54 (0.41,0.77)*	
Multivariate		0.67 (0.53,0.84)*	0.63 (0.47,0.84)*	0.55 (0.41,0.74)*	0.53 (0.40,0.71)*	<0.001**
Fetal loss 5 (Spontaneous abor	rtion, stillbirth)					
n/N	68/1732	71/2194	38/1022	30/1215	31/1390	
Univariate		0.82 (0.59,1.14)	0.95 (0.59,1.40)	0.63 (0.41,0.96)*	0.57 (0.37,0.86)*	
Multivariate		0.78 (0.56,1.09)	0.86 (0.57,1.30)	0.62 (0.40,0.95)*	0.53 (0.34,0.82)*	<0.01*

^{*} p <0.01, ** p<0.001; Mean BMI (Q1vQ5: 24.6 v 24.7); 15.3% PTB; 6.3% LBW; 3.2% fetal loss

Maternal dietary factors and early child growth

Matern Child Nutr. 2021 Jul; 17(3): e13127.

Published online 2021 Feb 17. doi: 10.1111/mcn.13127

PMCID: PMC8189249

PMID: 33595899

Prenatal dietary diversity may influence underweight in infants in a Ugandan birth-cohort

<u>Isabel Madzorera</u>, ¹ <u>Shibani Ghosh</u>, ², ³ <u>Molin Wang</u>, ⁴ <u>Wafaie Fawzi</u>, ¹, ⁵ <u>Sheila Isanaka</u>, ¹, ⁵ <u>Ellen Hertzmark</u>, ⁵ <u>Grace Namirembe</u>, ² <u>Bernard Bashaasha</u>, ⁶ <u>Edgar Agaba</u>, ³ <u>Florence Turyashemererwa</u>, ⁶ <u>Patrick Webb</u>, ², ³ and Christopher Duggan [⊠] ¹, ⁷

Infants of women in quartile 4 of MDD-W had 30% lower risk of developing underweight through age 12 months compared to infants of women in quartile 1

	Minimum Diet Diversity for Women (MDD-W)						
	Quartile 1	Quartile 2	Quartile 3	Quartile 4	P for trend		
Scores	(0-2)	(3)	(4)	(5-9)			
Cases	66/720	61/1128	50/842	34/589			
Univariate model							
HR (95% CI)	1	0.63 (0.56,0.70)**	0.64 (0.57,0.73)**	0.65 (0.56, 0.74)**			
Multivariate model							
HR (95% CI)	1	0.65 (0.58,0.72)**	0.67 (0.59,0.75)**	0.70 (0.62, 0.80)**	<0.001***		

^{**}p <0.01, *** p<0.001

Multivariate adjusted for: maternal height, maternal age, marital status, maternal nutrition knowledge, maternal education, paternal education, maternal height, infant gender, household wealth index, breastfeeding, community connector program.

• Median MDD-W score: 3.0 (IQR 3.0-4.0); Minimum diet diversity (5+ food groups out of 10): 18%

Findings and Implications

- Low maternal dietary diversity and quality may be **modifiable risk factors** for adverse birth outcomes in Tanzanian mothers.
 - PDQS, a measure of maternal diet quality, was inversely associated with PTB, LBW and fetal loss.
 - DDS, a measure of dietary diversity, was inversely associated SGA.
- LBW and SGA: important predictors of child anthropometric growth (stunting, wasting and underweight)
- MDD-W index associated with a significantly lower risk of underweight in infants
 - No significant associations between MDD-W index and stunting or wasting in infants
- Dietary diversity and diet quality should both be considered as important risk factors for poor birth outcomes; may be important for early child growth

Adolescent diets and nutrition status

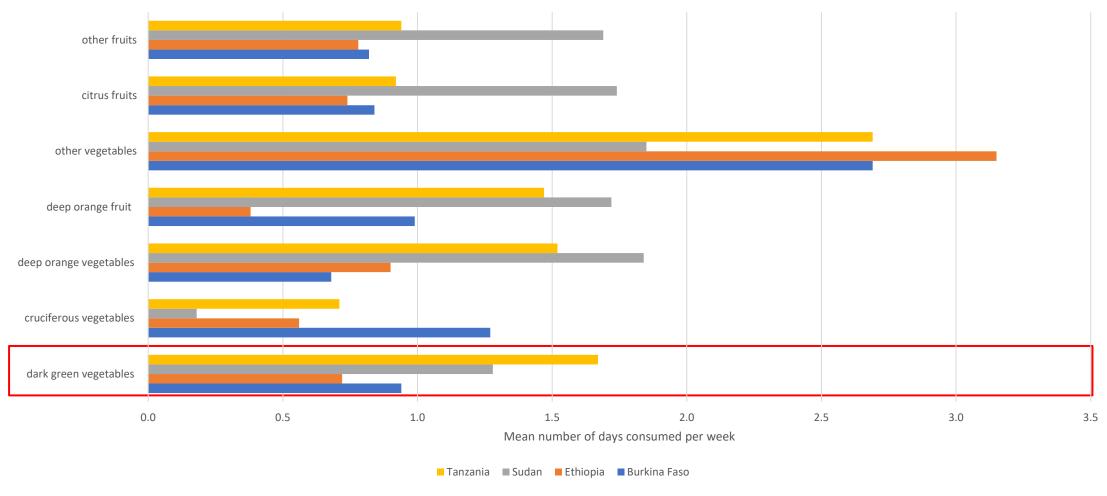
Dietary intake and quality for young adolescents in sub-Saharan Africa: Status and Influencing factors

Isabel Madzorera¹, Sabri Bromage², Mary Mwanyika-Sando³, Alain Vandormael⁴, Huda Sherfi⁵, Amare

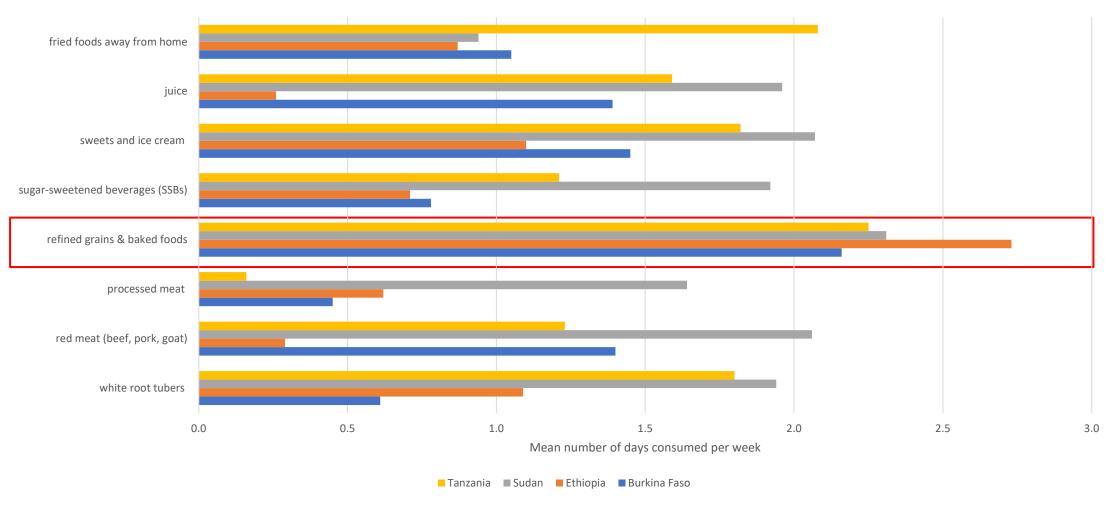
Worku⁶, Sachin Shinde¹, Ramadhani Abdallah Noor¹, Till Baernighausen⁴, Deepika Sharma⁷, Wafaie W.

Fawzi1, 2, 8

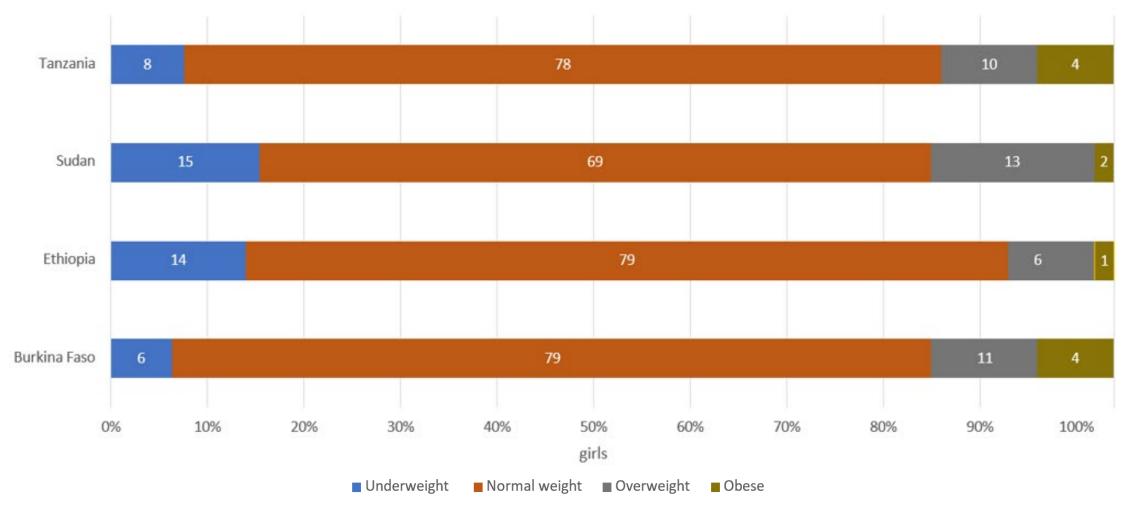
Cross-sectional, school-based Adolescent Health and Nutrition Study 4 SSA sites:
Ouagadougou (Burkina Faso)
Addis Ababa (Ethiopia)
Khartoum (Sudan)
Dar es Salaam (Tanzania)


4,609 school-going adolescents aged 10-15 years

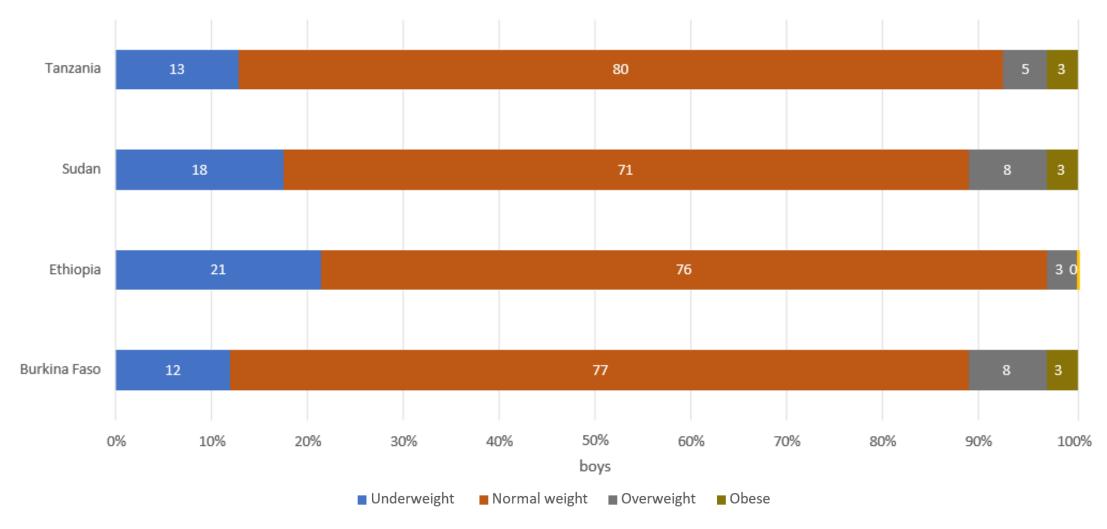
Africa Research Implementation Science and Education (ARISE) Network


Adolescent diets: locally adapted 7-day food frequency questionnaire (FFQ)

Diet quality: assessed using Global Diet Quality Score (GDQS)


Low weekly consumption of fruits and vegetables overall by adolescents (10-15 years) in Burkina Faso, Ethiopia, Sudan and Tanzania

Mean weekly frequency of consumption of unhealthy foods by adolescents (10-15 years) in Burkina Faso, Ethiopia, Sudan and Tanzania



Nutritional profile of adolescent girls in Burkina Faso, Ethiopia, Sudan and Tanzania

Overweight and obesity> 13% in 3 countries and underweight >13% in 2 countries

Nutritional profile of adolescent boys in Burkina Faso, Ethiopia, Sudan and Tanzania

Overweight and obesity> 10% in 2 countries and underweight> 18% in 2 countries

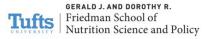
Madzorera et al., in preparation 2022

Findings and Implications

- Evidence of poor-quality adolescent diets, gender and age differences in the consumption of healthy diets.
 - Low: Consumption of vegetables, fruit, nuts and seeds, eggs, fish and poultry
 - **Higher:** Consumption of refined grains
 - Adolescent boys consumed unhealthy foods less frequently but consumed fewer cruciferous vegetables and deep orange tubers.
- Factors associated with adolescent diet quality (GDQS)
 - maternal unemployment
 - physical activity
 - adolescents reported physical activity on 2 (±2) days/week.
- Poor quality diets providing insufficient fruits, vegetables and animal source foods (ASFs) and increasing consumption of unhealthy foods may be exposing African adolescents to the double burden of malnutrition.

Next questions

- What are the metrics and tools available to assess diet quality in children and adolescents?
- Validation of tools: How is diet quality associated with the triple burden of malnutrition in children and adolescents?
- What interventions in food systems can improve diet quality and address the triple burden of malnutrition for children and adolescents
 - Concurrently addressing micronutrient deficiencies, undernutrition and overweight/obesity and future risk of diet-related chronic diseases



ACKNOWLEDGEMENTS AND THANK YOU!

