The unpredictability of life outcomes

Matthew J. Salganik and Kathryn Edin

Department of Sociology
Princeton University

June 3, 2024
NICHD Advisory Council

Funding for FFCWS provided by NICHD (R01HD36916, RO1HD39135, RO1HD40421) and a consortium of private
foundations, including the Robert Wood Johnson Foundation. Funding for this research provided by the NSF
(1760052), Princeton’s Center for Statistics and Machine Learning, Schmidt Futures, Russell Sage Foundation &

the Overdeck Fund. Part of this work was done while MJS was on sabbatical at the Institute for Advanced Study.



ir

*MATTHEW J. SALGANIK -

social science <> data science



Life trajectory prediction task: Given some data about a person
and their environment, how well can we predict their future
outcomes?
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Life trajectory prediction task: Given some data about a person
and their environment, how well can we predict their future
outcomes?

» obvious and heretical
» old and new

» scary and exciting
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Child protective agencies are haunted when they fail to save kids. Pittsburgh‘
officials believe a new data analysis program is helping them make better
judgment calls.

By DAN HURLEY JAN. 2, 2018
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» Thousands of children born in 20 U.S. cities with an
over-sample of non-marital births

» Followed from birth
» Already used in more than 1,000 published papers
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Data Child Module
module age

Mother Birth Child health and development; Mother-father relation-
ships; Fatherhood; Marriage attitudes; Relationship with
extended kin; Environmental factors and government pro-
grams; Health and health behavior; Demographic charac-
teristics; Education and employment; Income
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4,242 families

Birth to age 9
12,942 variables

Age 15
6 variables

Information about child and family

Training

Leaderboard

Holdout

Background data

Outcome
data



Using a large, high-quality social science dataset collected since
birth and modern machine learning methods, how accurately can
we predict outcomes from children, parents, and families?

> icholdout (Ji — ¥i)?
> icholdout Vtrain — ¥i)?

2 _
Rholdout =1-

Six outcomes: Child grade point average (GPA), Child grit,
Household eviction, Household material hardship, Adult job loss,
Adult job training
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Is this any better than a benchmark model?
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Green line: 4 variable regression model



How can | get a feel for this level of predictability?
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What's going on?



Theories

Facts



“Origins of unpredictability in life trajectory prediction”
lan Lundberg, Rachel Brown-Weinstock, Susan
Clampet-Lundquist, Sarah Gold, Tim Nelson, Vicki Yang, Kathryn
Edin, and Matthew Salganik
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» In-depth semi-structured interviews with young adult and
primary care giver (separately)

» About 40 families spread over 3 cities

> Life history interviews focused on 3 time periods:
1) birth - 9, 2) 9 - 15, 3) 15+

» 2 interviewers: 1 blinded and 1 unblinded

Reading and discussing the interview transcripts, we inductively
settled into a conceptual framework
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Irreducible error



Three sources of irreducible error:
» Unmeasurable features
» Unmeasured features

» Imperfectly-measured features
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Father
passed
away

Mother
depressed

Source: Wikimedia
“When he passed away, she checked out. She was de-
pressed. .. she was in her own world. Then, [my brother and
I] were in our own world...It wasn't really a relationship.”

Predicted GPA: 3.06. Actual GPA: 1.50
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Lola

Mother engaged in illegal activities
> elderly neighbor got Lola ready for school many mornings

» grandparents remodeled their basement to house Lola and her
mother for a while

» aunt employed Lola's mother in a family business

Predicted GPA: 3.04. Actual GPA: 3.75.
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Hennessy

A2E. How close do you feel to your mom? Would you say...

Extremely close, ..
Quite close,......
Fairly close, or,
—> Not very close?
REFUSED........
DON'T KNOW

“We always bickered and fought...l caught
myself begging for my mom... ‘Mom, | need
you,'...and she. . . just like blatantly ignored

me.



Hennessy

A2E.

How close do you feel to your mom? Would you say...

Extremely close, ..
Quite close,......
Fairly close, or,
Not very close?
REFUSED........
DON'T KNOW

Mom told her, “[y]ou better start treating me
better, because | might not live that long”
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Hennessy

A2E. How close do you feel to your mom? Would you say...

Extremely close, ..
Quite close,.....
Fairly close, or,
—> Not very close?
REFUSED ..
DON'T KNOW

“l couldn’t even focus in class...| was shaking.
That was all | could think about. | was, like,
crying in school, and they [school staff]| had
no idea what was wrong with me.”

Predicted GPA: 2.71. Actual GPA: 1.25.



Irreducible error

Three sources of irreducible error:
» Unmeasurable features (Bella's story)
» Unmeasured features (Lola's story)

» Imperfectly-measured features (Hennesey's story)

For more information, see our paper coming out this week in the
Proceedings of the National Academy of Sciences.
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Computational social science
» v1: social science < data science

> v2: social science + Al
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