
   
 

 
         

 
 

         
         

        
           

     
       

    
          

 

 
    

 
            

            
        

 
       

         
  

 
     

 

 
 

 
 

 
        

       
      

         
 

         
            

    
    

    
   

    
     

  
 

    
    

   
     

  
  

 

    
   

   
    

       
     
     

 

Simple harmonic oscillator based estimation and reconstruction for one-dimensional q-space MR 
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INTRODUCTION: 
The q-space spectroscopy/imaging method provides important insights into tissue microstructure by enabling the calculation of ensemble average diffusion propagators 
through a Fourier transform. Descriptors of the diffusion propagators such as its moments and return-to-origin probability may be indicators of tissue microstructure 
which could  be sensitive to changes due to aging, development and disease. Moreover, the non-monotonic dependence of the q-space signal on the wave number, q, [1] 
may provide a direct means to determine cell sizes.  Estimations of the derived quantities and reconstruction of the propagators can be significantly improved if the 
signal decay can be expressed parametrically. For this purpose, biexponential fitting [2] and cumulant expansion techniques have been applied to q-space data. 
However, biexponential functions are monotonic by design, and as such, they can not model diffraction-like features. The cumulant expansion method is bound to fail 
as well, because the signal minima are typically beyond the radius of convergence [3] for such expansions. In this work, we propose to express the MR signal in terms 
of the eigenfunctions of the simple harmonic oscillator Hamiltonian, which form a complete orthogonal basis for the space of square integrable functions.  

METHOD: 
The q-space MR signal, S(q) can be written as 

where  Hn(x) is the n-th order Hermite polynomial, and u is a characteristic length. Note that this basis has the desired Gaussian behavior in the small-q regime. 
Therefore, an estimate  of  u can  be determined  from  the  first few points of  the  S(q) profile. Furthermore, this construction ensures that  when  an are real, the real and  
imaginary parts of the  signal  are even  and odd,  respectively, which in  turn  assures  that the probabilities will be  real. The estimation of the coefficients,  an, can  be  
performed by  expressing  the  problem as a linear system  S=Qa,  where Q is the (number-of-q-values  x N) design matrix of  Φ  values, and then c onstructing the  
pseudoinverse of the design matrix using singular value decomposition.  
 

One of the most interesting characteristics of the basis used is that the Fourier transform of an eigenfunction Φn can be expressed in terms of itself. This property makes 
it possible to immediately reconstruct the average propagator using the same basis and the same coefficients an,: 

Having an analytical form of the signal and the probabilities, scalars such as the return-to-origin probability and the moments of the distribution can be computed 
rapidly. The return-to-origin probability is given simply by setting x=0 in the above expression. The evaluation of the moments is more difficult. After some algebra, the 
m-th order moment was found to be given by 

where m is even. For odd-order moments, the index k takes odd values, i.e., k=1,3,5… . 

RESULTS: 

The proposed scheme was used to estimate the signal intensity 
and the associated average propagator parametrically. As an 
example, we demonstrate the results obtained from modeling 
the long diffusion time pulsed-field-gradient signal from a 
rectangular pore where the separation between the two sides of 
the pore is L. The signal decay is an oscillatory function 
whose average propagator is a triangular function. The 
estimations were performed using only 33 data points reaching 
a qL value of 2.5. A total of 28 terms were kept in the series. 
The estimated signal intensity was indistinguishable from the 
ground truth (GT) signal in the approximation region as shown 
on the top left panel, whereas reasonable performance was 
also observed in the extrapolation region. The reconstructed 
propagator was barely distinguishable from the estimated 
probabilities despite its challenging non-smooth form.  

The return-to-origin probability and the even-order moments 
were computed as described above. The percentage deviations 
from analytically evaluated (exact) values were: 3.3 in return-
to-origin probability, 1.7x10-6  in <x0>, 5.1x10-5  in <x2>, 
6.7x10-4  in <x4>, 6.7x10-3  in <x6> and 5.4x10-2  in <x8>. These 
per cent deviations suggest that the estimated form of E(q) can 
be used to accurately estimate the derivatives of E(q) as well. 

DISCUSSION & CONCLUSION: 
The proposed basis has several desirable properties that suit problems of q-space signal and average propagator estimation: The basis naturally implies a Gaussian 
(monoexponential) signal decay at low q-values. Unlike biexponential fitting and cumulant expansion methods, it is linear. Moreover, estimation is fast, accurate and 
automatically provides a simple way to estimate the Fourier transform, i.e., the average propagator and several scalar indices from the estimated series coefficients. 
Finally, the one dimensional simple harmonic oscillator based estimation technique is able to accurately handle challenging signal decays and average propagators. 
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