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Web Appendix A: Longitudinal Model 

In this Section, we present some additional technical details on the longitudinal change point model. Figure 1 

demonstrates some curves generated from the expectation of equation (1) in the main text. This expectation 

can be represented as 

⎧ 
K + (β1 + bi1)sij if sij < c + bic and c + bic ≥ 0⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪

 K + (β1 + bi1)(c + bic) + (β2 + bi2){sij − (c + bic)} if sij ≥ c + bic and c + bic ≥ 0 
E{Yi(sij )} = (1) 

K + (β1 + bi1){sij − (c + bic)} + (β2 + bi2)(c + bic) if sij < c + bic and c + bic < 0⎩ K + (β2 + bi2)sij if sij ≥ c + bic and c + bic < 0, 

where sij = tij − (Δ + biΔ). The figure shows the expectation of the longitudinal model by tij (time since 

entry into the hospital) for different values of bi, where β1 = 0.1, β2 = 0.8, Δ = 0, and c = 8. 

Figure 1 demonstrates a few aspects of the model. First, we can see that the t at which the change point 

occurs decreases as biΔ or bic decreases (holding everything else constant). Second, for bi = (0, 0, −5, 5) 

(dotted) versus bi = 0 (solid) the E(Yij ) is increased by a constant. In general, if bi = 0 and b ∗ = 
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Web Figure 1: Realizations of E(Yij ) versus tij with K = 2 by bi = (bi1, bi2, biΔ, bic): bi = 0 (black 
solid), bi = (0, 0, −2, 0) (dot–dash), bi = (0, 0, 0, −9) (short dash), bi = (0, 0, −5, 5) (dotted), and bi = 
(−0.09, −0.5, 0, 0) (long dash), where β1 = 0.1, β2 = 0.8, Δ = 0, and c = 8. 

(0, 0, −B, B) with B > 0 then E{Yi(s)|bi}+β1B = E{Yi(s)|bi 
∗ } if c ≥ 0 and E{Yi(s)|bi}+β2B = E{Yi(s)|bi 

∗ } 

if c < 0, for all t. Thus, the model allows for varying mean cervical dilation at hospital entrance, reflecting 

entrance at different stages of labor. Third, the change point can occur before the women gets to the hospital 

(i.e., when t < 0). Fourth, the flexibility in the pre- and post-change point slopes allows for a variety of 

shapes that fit the data demonstrated in Figure 1 on the main text. 

Web Appendix B: Adaptive Multivariate Rejection Sampling 

A critical step in the MC algorithm presented in Section 4 of the main text, is the ability to draw random 

samples from the posterior density of bi. In this Section, we detail an adaptive multivariate rejection sampling 

algorithm that will generate a random sample of size L from the posterior density 

JiJ 
h(bi|Dik, θ) ∝ f(Yij |bi, K, θ)g(bi|Σ) = L(bi|Dik, θ). 

j=1 

Multivariate rejection sampling is an algorithm that can generate random samples from a distribution without 

having to calculate the constant of proportionality. Given a candidate distribution hc a random sample of 

size L from h(·|Dik, θ) can be generated by iterating between the following three steps: 
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 (a) draw bc from a candidate distribution hc, and w from a Uniform(0, 1) distribution, 

(b) calculate r = τ −1 c
i   /hc(b

c
 L(b |Dik,θ) ), where τi is such that r ≤ 1 for all bc,

 (c) if w ≤ r then accept bc, if w > r then reject bc. 

Steps (a)-(c) are iterated between until a sample of size L is obtained. 

A standard choice for the candidate distribution is the estimated prior distribution of bi. However, this 

choice can be centered far away from the true posterior distribution with much larger variability resulting 

in a low acceptance probability. Let hc3(·|α, Ψ) denote a multivariate t-distribution with non-centrality 

parameter α, covariance matrix Ψ, and degrees of freedom 3. For subject i in the mth iteration, the 

posterior distribution of bi is approximated by hc3 setting α = α̂ ˆ
i and Ψ = Ψi where 

�  

α̂i = argmax log{L(bi|Dik, θ
m)  b

�
 

 
} , (2)

i

ˆmthe posterior mode of h(bi|Di, θ ) and 

ˆ
� 

∂2 

Ψi = log ( m)
bi∂bi

 
 

{L bi
∂

|Dik, θ } 

�   , (3)
bi =α̂

m 
the hessian matrix evaluated at ˆα̂i. Given α̂i and Ψi, τi in ˆstep (b)

 
 for a given value of θ is given by 

�  
L(b|D , θm

ik ) 
τi = max . (4) 

b hc3(b| α̂i, Ψ̂i) 

�

 
Here α̂ ˆ m

i and Ψi are estimated using the observed data Dik and the current parameter vector θ̂ . As 

discussed in ˆSection 3 of the main text, we use α̂i and Ψi in AGQ to center and scale the standard Gaussian 

quadrature nodes, respectively. For this reason they are a natural choice to improve the precision of the 

candidate distribution. By utilizing a t-distribution with 3 degrees of freedom we allow for extra room in the 

tails, which stabilizes the maximization in (4). The approximated h method will require extra optimization 

versus the standard method of setting the candidate distribution to the prior distribution. We found that 

approximated h method results in markedly higher acceptance probabilities than the standard method, which 

lead to substantially lower overall computation times. 
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Web Table 1: Summary simulation studies using linear covariate associations with β, Δ, and c. The 
simulations were ran for 1, 000 iterations with n = 500. Displayed is the true parameter value (θ), the 
average of the estimated parameters (mean), and the Monte Carlo standard error (mcse). 

θ mean mcse 
β1 0.25 0.244 0.013 
β2 1.50 1.503 0.018 
Δ -0.75 -0.752 0.019 
c 5.25 5.250 0.021 
σΔ 1.25 1.248 0.021 
σc 1.24 1.241 0.021 
σb1 

σb2 

0.24 
0.23 

0.238 
0.234 

0.016 
0.021 

θ mean mcse 
β11 -0.10 -0.099 0.014 
β21 0.20 0.199 0.018 
Δ1 0.00 0.000 0.021 
c1 -0.50 -0.501 0.019 
β12 0.10 0.097 0.013 
β22 -0.20 -0.198 0.015 
Δ2 0.50 0.499 0.017 
c2 1.00 1.000 0.017 

θ mean mcse 
σ 0.25 0.255 0.009 

ρb1b2 0.10 0.099 0.014 
ρb1Δ 0.20 0.167 0.079 
ρb1c -0.10 -0.138 0.090 
ρb2Δ 0.10 0.072 0.099 
ρb2c -0.20 -0.222 0.081 
ρcΔ 0.30 0.254 0.095 

Web Appendix C: Covariate Adjusted Simulation Study 

In this Section, we present results from a simulation study that considered covariate effects on the parameters 

β, Δ, and c. The data were generated using the model given in equation (1) of the main text, where 

bi was generated from a multivariate normal distribution with mean 0 and covariance matrix Σ. The 

diagonal elements of Σ are denoted by (σ2 , σ2 , σ2 , σ2), with correlations (ρb1b2 , ρb1Δ, ρb1c, ρb2 Δ, ρb2c, ρΔc).b1 b2 Δ c 

The number of examination times, Ji, were generated via Ji − 4 ∼Poisson(5) so that there was an average 

of 9 examination times with a minimum of 4. The examination times were uniformly distributed over the 

∼iidinterval (0, 10). We induced linear covariate associations with Z1 N(0, 1) and Z2 ∼iidBernoulli(1/2), 

where β1i = β1 + β11Z1 + β12Z2 + bi1, β2i = β2 + β21Z1 + β22Z2 + bi2, Δi = Δ+Δ1Z1 +Δ2Z2 + biΔ, and 

ci = c + c1Z1 + c2Z2 + bic. The parameter values are given in Table 1 where K = 2. 

For each of the 1000 simulated samples the procedure in Section 3 of the main text was implemented 

with 10 quadrature nodes. In Table 1 we present the results of the covariate adjusted simulation. For 

most of the parameters, the average estimated value demonstrated little bias. Similar to the covariate 

unadjusted simulation, some bias was apparent for the correlation parameters. For the parameters relating 

to the covariates (β1j , β2j , Δj , cj , for j = 1, 2) there was minimal bias. This demonstrates that the proposed 

method can be used to estimate multiple parameter associations with covariates that are binary or continuous. 

Web Appendix D: Additional Data Analysis Results 

In this section, we present some additional details of the data analysis presented in Section 6 of the main 

text. Specifically, we present the parameter estimates, standard errors and 95% confidence intervals for the 
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Web Table 2: The estimated standard deviation and correlation coefficients of the random effects for the 
covariate adjusted model (left), along with the normal (middle) and obese (right) BMI categories. 

Covariate adjusted BMI 18.5 to 25kg/m2 BMI 30 to 55kg/m2 

est sd 95% CI est sd 95% CI est sd 95% CI 
σΔ 1.27 0.08 (1.11, 1.43) 2.23 0.04 (2.15, 2.30) 1.30 0.04 (1.23, 1.37) 
σc 2.54 0.09 (2.37, 2.71) 2.87 0.05 (2.78, 2.97) 2.58 0.05 (2.47, 2.69) 
σb1 0.53 0.05 (0.43, 0.63) 0.22 0.02 (0.19, 0.25) 0.48 0.02 (0.44, 0.53) 
σb2 1.07 0.08 (0.91, 1.23) 0.59 0.02 (0.55, 0.63) 0.94 0.03 (0.88, 1.00) 
ρcΔ 0.71 0.01 (0.689, 0.735) 0.73 0.03 (0.684, 0.780) 0.69 0.01 (0.666, 0.712) 
ρ1Δ -0.29 0.04 (-0.37, -0.20) -0.57 0.10 (-0.76, -0.38) -0.22 0.08 (-0.37, -0.07) 
ρ2Δ -0.01 0.03 (-0.06, 0.04) -0.01 0.14 (-0.27, 0.26) -0.58 0.06 (-0.70, -0.46) 
ρ1c 0.19 0.05 (0.09, 0.29) 0.07 0.07 (-0.07, 0.22) -0.07 0.04 (-0.15, 0.02) 
ρ2c -0.61 0.02 (-0.65, -0.56) -0.51 0.07 (-0.65, -0.38) -0.14 0.04 (-0.21, -0.06) 
ρ12 -0.62 0.04 (-0.70, -0.54) -0.65 0.07 (-0.78, -0.52) 0.08 0.04 (-0.00, 0.15) 

standard deviations and correlation matrix for the random effects (see Table 2), state the full mathematical 

model used for the covariate adjusted analysis, and present dynamic individual prediction plots for the 

covariate adjusted model. 

In Table 2 we give the estimated random effect standard deviations and correlations along with their 

standard errors and 95% percentile based confidence intervals. For the stratified analysis, there is increased 

variability in the first and second phase slopes (estimates of σb1 and σb2) for lean women as compared to their 

obese counter-parts. The estimates of σΔ indicates that obese women show substantially more variability 

in when they arrive at the hospital relative to lean women. The variability in the change point was similar 

in both groups. The notable difference in the estimated correlation matrices is ρb1 b2 , where the random 

effects for the first and second phase slopes are highly negatively correlated for lean women and essentially 

uncorrelated for obese women. Thus, there appears to be a regression to the mean phenomenon for lean 

women where those with slow (rapid) progression in the first phase, tend to have rapid (slow) progression in 

the second phase of labor. We do not see this phenomenon for the women in the obese group. 

We now discuss the model formulation for the covariate adjusted analysis presented in Section 6.2 of the 

main text. For woman i, let Zi1 denote the indicator that woman i was in the obese pre-pregnancy BMI 

category, Zi2 the age of women i minus 24 (the median age), and Zi = (Zi1, Zi2). For simplicity we state 

the the full covariate adjusted model for ci > 0, ci < 0 follows from equation (1) in the main text. The 

covariate adjusted model for Yi(s) is 

K + (β1 + β1bmiZi1 + β1ageZi2)s +  i(s) if s < ci 
Yi(s) = (5) 

K + (β1 + β1bmiZi1 + β1ageZi2)ci + (β2 + β2bmiZi1 + β2ageZi2)(s − ci) +  i(s) if s ≥ ci 

⎧ ⎪⎨ ⎪⎩ 
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where 

s = t − (Δ + ΔbmiZi1 +ΔageZi2 + biΔ), ci = c + (c + cbmiZi1 + cageZi2 + bic), 

bi = (bi1, bi2, biΔ, bic)
  ∼MVN(0, Σ), and  i(s) ∼iid N(0, σ2). It is straightforward to amend the analysis 

procedure to include the covariates. 

In Figure 2 we display the predictions for a randomly chosen obese and lean woman by the number of 

observations in Dik. We display the estimated mean of the posterior distribution of the expected cervical 

dilation, along with the estimated 2.5th and 97.5th percentiles for both women. Using the notation in Section 

4 of the main text,  ˆ ˜ ˆ ˜ ˆthis corresponds to the estimates of µ̃(t|Dik, θ), Q0.025(t|Dik, θ), and Q0.975(t|Dik, θ) for 

k = 4, 5, 6, 7, and 8. Each figure shows the observed measurements Dik as well as the unknown future 

observations. The estimate of µ̃ gives the expected cervical dilation trajectory, while Q0.025 and Q0.975 give 

an estimate of the range for the expected trajectory for 95% of women with the given observed data Dik. 

The predictions were implemented using covariate adjusted model presented above. The left hand side of 

Figure 2 represents our random chosen lean woman, while the right side is the obese woman. 

For the lean woman, her expected cervical dilation trajectory is relatively consistent by k. It is predicted 

that she be dilated a full 10 cm approximately 11 hours after she entered the hospital for all values of k 

(she reach 10 cm dilation at t = 9.5 hours). For the obese woman she did not reach the full 10 cm dilation. 

Her labor was stopped at 7 cm approximately 16 hours after she arrived at the hospital. With only the 

first 4 measurements, it is evident that this labor will longer than the lean woman’s labor. It is clear, once 

observations 7 and 8 are included, that it is doubtful that this woman will reach full dilation before 16 hours. 
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Web Figure 2: Prediction of the expected cervical dilation (solid gray) with 95% prediction intervals (dot 
dash gray) by the size of the training sample for a randomly chosen lean (left) and obese (right) woman with 
10 observations. The firgure constains the training data (solid black line with black dots) and the future 
observations (dashed line with black triangles). 
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