Placental tissue and cellular metabolism

Nick Illsley, DPhil Department of Obstetrics and Gynecology Hackensack University Medical Center Hackensack, NJ

HUMAN PLACENTA PROJECT

Tissue and cellular metabolism

Placental tissue and cell metabolism are crucial functions for study

- Placental metabolic functions are vital for the growth and development of the placental supply line.
- The placenta is metabolically active, consuming a significant fraction of the metabolic substrates it takes up, thus altering output to the fetus
- The placenta also acts as a metabolic sensor. Under abnormal or stress conditions such as hypoxia, placental metabolism is modified resulting in alterations to the substrate profile presented to the fetus

HUMAN PLACENTA PROJECT Tissue and cellular metabolism

Pathophysiologies

Intrauterine growth restriction (IUGR), preeclampsia (PE) and diabetes in pregnancy

RO.

Pathophysiologic processes

Those that alter the distribution and utilization of energygenerating substrates, primarily oxygen and glucose

Tissue and cellular metabolism

Pathophysiologic processes

Those that alter the distribution and utilization of energygenerating substrates, primarily oxygen and glucose

What are the sort of questions we need to answer?

- When does placental hypoxia occur? Can we measure intervillous pO₂and oxygenation in other placental blood spaces?
- What is placental glycemic status? How can we measure placental glucose transfer and consumption in vivo?
- What is the balance between glycolytic and oxidative energy metabolism in the placenta? Can we measure this in real time?
- When does flow reduction, hypoxia, reperfusion lead to generation of ROS? Can we devise ongoing measures of oxidative stress?

HUMAN PLACENTA PROJECT Tissue and cellular metabolism

In what other in vivo conditions is assessment of these pathophysiologic processes important?

- Cardiac conditions such ischemic heart disease
- Cerebral hypoxia/ischemia; hypoxia/reperfusion injury
- Solid tumor development/progression
- Obesity, type 1 and type 2 diabetes mellitus

What methodologies and techniques are used in these conditions?

HUMAN PLACENTA PROJECT **Tissue and cellular metabolism** Oxygen:

With access to tissue:

Physical: Oximetry, near(mid)-infrared spectroscopy, electrodes, other physical probes

Chemical: 2-nitroimidazoles

With access to blood:

Physical: Electrodes, other physical probes,

Chemical: microRNA, metabolomics

No access:

Physical: (MRS/1H-lactate, fMRI/BOLD

Chemical: MRS/19F-fluorocarbons

HUMAN PLACENTA PROJECT **Tissue and cellular metabolism** Glucose: With access to tissue:

Physical: Near-infrared spectroscopy, electroenzymatic

Chemical: Phenylboronic acid, Concanavalin-A sensors

With access to blood:

Physical: Electrodes, other physical probes,

Chemical, microRNA, metabolomics, PBA/Con-A sensors

No access: Physical: MRS/¹H-lactate, glucoCEST

Chemical: PET, SPECT

HUMAN PLACENTA PROJECT **Tissue and cellular metabolism** Conclusions

- It is <u>currently</u> impractical to screen for events which lead to placental metabolic disturbances in the absence of other clues such as prior history
- By the time a pathology such as IUGR is detected clinically, it is probable that significant, irreversible (feto)placental damage has occurred
- It is necessary to devise new methods of in utero assessment which will enable therapeutic intervention prior to the establishment of disease