THE HUMAN
Eunice Kennedy Shriver National Institute ﬁ'ﬁgﬁgg?‘
of Child Health and Human Development

How we shuffle our genes in the germ-line

and why it might matter for human fertility

By Mohamed Mahgoub

Todd Macfarlan, PhD



Meiotic Recombination

Homologous
chromosomes
aligned

Meiotic Recombination is essential for:

* Mixing alleles and generating genetic diversity

e Alignment and segregation of chromosomes

Chromosome
crossover

Meiotic Recombination involves:

e A programmed double strand break (DSB) in one chromosome

e Homology directed repair of the DSB

Meiotic Recombination is not a random process sty

e Typically 2-3 crossovers per chromosome
e Crossovers occur in hotspots

e Crossovers (or lack of them) determine which alleles stay linked
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Consequences of Meiotic Recombination Errors

5-7 million oocytes (2 milion at birth) > 500 billion sperm
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Gross chromosome rearrangements (GCRs) overlap hotspots
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Where are hotspots distributed?

“Ancestral State”
Within genes
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PRDM9 binds DNA and places a chemical sighature that

determines where DSBs will occur
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In Prdm9 KOs, hotspots revert to the ancestral state
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Can we identify factors that may recognize the dual mark?
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ldentification of genes co-expressed with Prdm9

Zcwpwl1 mainly expressed in testis

cwpwl RNA
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Zcwpwl1 domains suggest it is a histone methyl reader
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Z/CWPW1 binds to the dual H3K4me3/H3K36me3 mark in vitro

Histone Peptide Pull down Assay Isothermal titration calorimetry

Mix biotinylated H3 peptides with Zcwpw1
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/CWPW!1 binds only to dual marked sites in vivo
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/CWPW1 binds to PRDM9 determined hotspots in vivo

Hotspots
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Zcwpw1”- mice are azoospermic




Partial asynapsis in Zcwpwl1”- spermatocytes
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DSB repair failure in Zcwpw1”- spermatocytes
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Alternative models for ZCWPW1 function
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END-Seq directly maps DSBs

Molecular Cell

DNA Breaks and End Resection Measured
Genome-wide by End Sequencing
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Co-emergence of PRDM9/ZCWPW1 re-engineered the landscape
of recombination hotspots
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Could defects in the PRDM9 system contribute to infertility in humans?

H3K4me3
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 Prdm9 and Zcwpwl1 knockout in mice lead to sterility in males (azoospermia)

Rationale

 Two small studies in Japan found SNPs in PRDM9 in cases of azoospermia

e PRDMS9 is a rapidly evolving gene that includes a coding mini-satellite sequence



The PRDMS9 zinc finger array is a mini-satellite

PRDMS9 is a DNA binding histone methyltransferase
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The PRDM9 gene contains a mini-satellite that encodes its zinc fingers
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PRDMO allele frequencies in human populations
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New PRDMI alleles are produced by recombination of zinc fingers

*Prdm9 requires specialized genotyping because it is a mini-satellite
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PAC-BIO Genotyping of PRDM9 identifies two novel PRDMO9 alleles

in azoospermic males

Azoospermia PRDM9 Genotypes (n=51) Normospermia PRDM9 Control

Genotypes (n=42)
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Novel alleles are likely derived variants of rarer alleles
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Summary and Perspectives

e A small case study identifies two novel PRDM9 alleles from azoospermic patients
* Are these non- or neo-functional dominant alleles? Are they causative?

e Could removal of such alleles could restore fertility?
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Summary and Perspectives

Could PRDM9/ZCWPW1 contribute to other human diseases/cancer?

e Rare PRDMOI alleles are associated with childhood B-ALL (Hussin et al Genome Research 2013)

e PRDMO9 reactivation occurs in ~10% of cancers, GCRs accumulate at PRDM9 binding sites (Houle et al, Geneome Research 2018)

e ZCWPW1 expression correlates with better survival in several cancer types

Recombinant
chromatids
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PROGNOSTIC SUMMARY!

Prognostic marker in pancreatic cancer (favourable), cervical cancer (favourable), lung cancer (favourable) and urothelial cancer (favourable).

p<0.001
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p<0.001

Lung cancer
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