Constraints and Opportunities for Learning From Media during Early Childhood

> Rachel Barr Workshop NICHD January 2018

Television is the most frequent media format during early childhood

- Children < 8 years spent on average 1hr 40 min/day viewing TV
 - 72% of all screen time
 - Amount has remained constant
- TV format (DVR, streaming)and viewing devices (tablets, tv set, smartphones) have expanded rapidly
- ~30 min/day difference in usage as a function of parental education and income

Mobile device usage starts young

- Virtually all homes have a tablet or smartphone (98%).
- Usage has increased. In 2013 38% of those under 8 had used a mobile device and now 84% of those under 8.
- Under age 2, 46% have ever used a mobile device
- < 2s only 5 min/ day to 21 min/day in 5-8 year olds on mobile devices

Commonsense media 2017

Content Matters

Context Matters

Can they learn from different types of media?

Transfer of Learning

- Adaptive skill
- Transfer info across content & context
 - Day-to-day functioning
 - Central to memory theories → development of a flexible representational system

Learning from TV, books, touchscreens

- Involves transfer of learning across content & context
 - is almost effortless by adulthood (e.g. tv cooking show → meal
 - cognitively challenging during early childhood

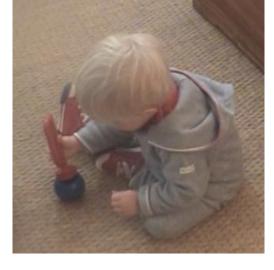
(Barnett & Ceci, 2002; Barr, 2010, 2013; Hayne, 2006)

Transfer of Learning

- Young children consistently learn less from TV and touchscreens than from a live demonstration because it is difficult to understand how information from the screen relates to the real world = the transfer deficit. (For review see Anderson & Pempek, 2005; Barr, 2010,2013)
- Transfer deficit can be overcome by considering the 3C's (Guernsey, 2012), how the child learns and the content and the context of that learning. (Barr, 2013, Barnett & Ceci, 2002; Hayne, 2006)

Barr and Hayne, 1999

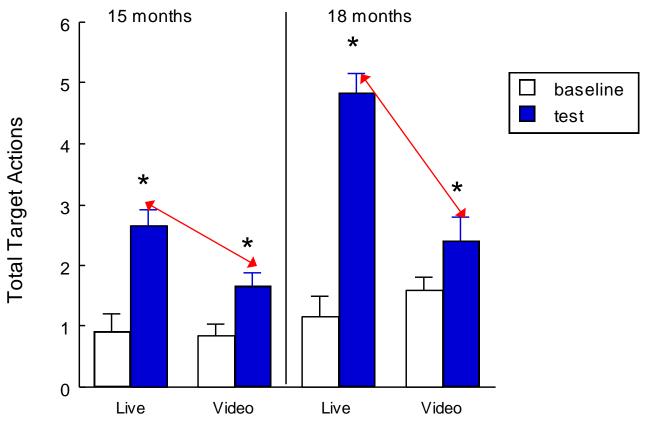
- Age
 - 12-, 15-, 18-montholds
- Manipulation
 - live 3x model, video
 3x model, or control
 group.
- Delay
 - 24 hours



Experimental Set-up

Infant behaviors

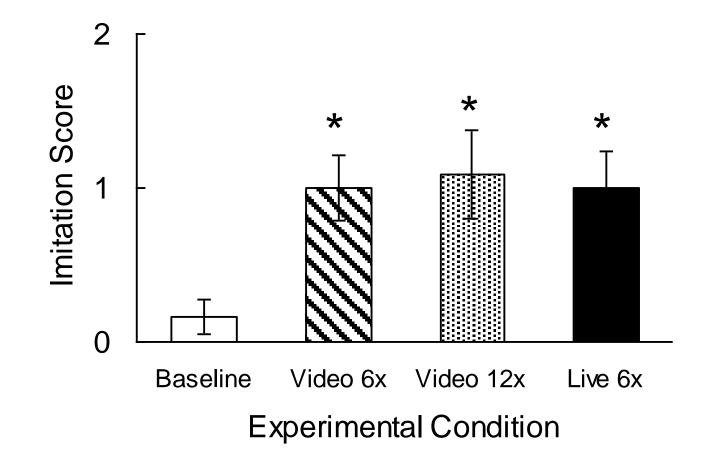
Behavior 1



Behavior 2

Behavior 3

Transfer Deficit



Experimental Condition

Barr & Hayne (1999)

Infants as young as 6 months can learn from TV

Barr, Muentener & Garcia (2007)

Touch Screen Imitation Task

- Establish touch screen deferred imitation procedure to examine transfer between 2D and 3D
- Hypothesize that transfer (e.g., 2D to 3D or 3D to 2D) will be more difficult than no transfer (e.g. 2D to 2D)
 - because fewer retrieval cues at test that match encoding conditions

Whether we use a Button Box Test with 15 month olds

Bus Button Box

Cow Button Box

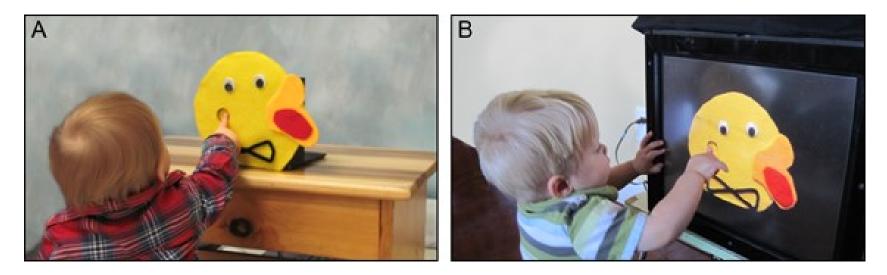
Firetruck Button Box

- Baseline
 - 3D
 - 2D
- Within Dimension
 - 3D to 3D
 - 2D to 2D
- Cross Dimension
 - 3D to 2D
 - 2D to 3D

Zack, Barr, Gerhardstein, Dickerson, & Meltzoff (2009)

Demonstration Phase

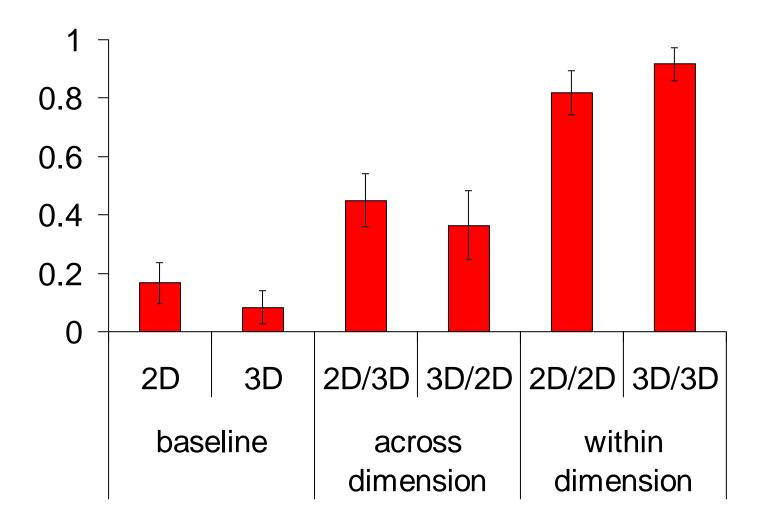
OR


3D Box Demonstration

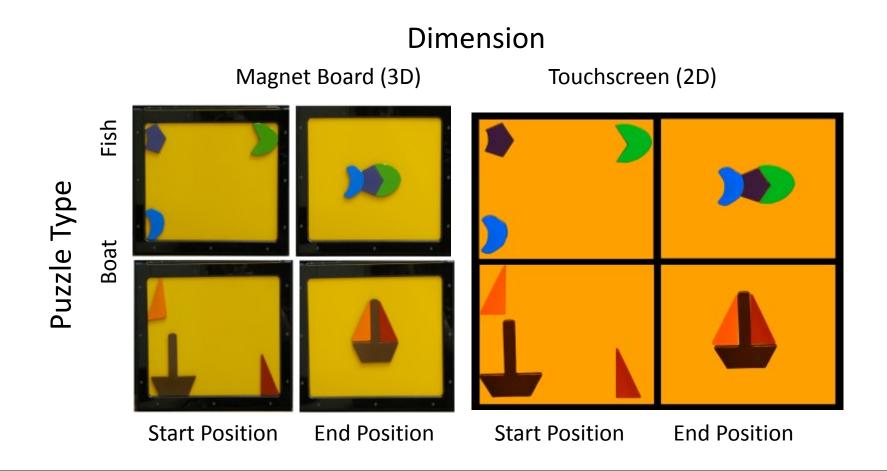
2D Touchscreen Demonstration

Zack, et al., 2009

Test Phase


3D Box Test OR 2D Touchscreen Test

15-month-olds


Zack, et al., 2009

Results: Transfer deficit

Zack, Barr, Gerhardstein, Dickerson & Meltzoff, 2009

Or a Puzzle Imitation Paradigm with 2.5 & 3-year-olds

Dickerson, Gerhardstein, Zack & Barr, 2012

Magnet Board/Touch Screen

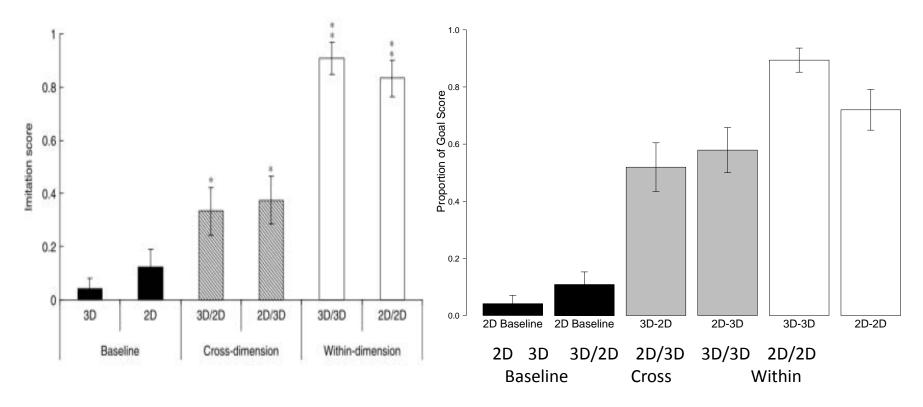
Touchscreen Transition Magnet Board

Demonstration Phase

2D Touchscreen Demonstration

3D Demonstration

Test Phase



2D Touchscreen Test OR 3D Test

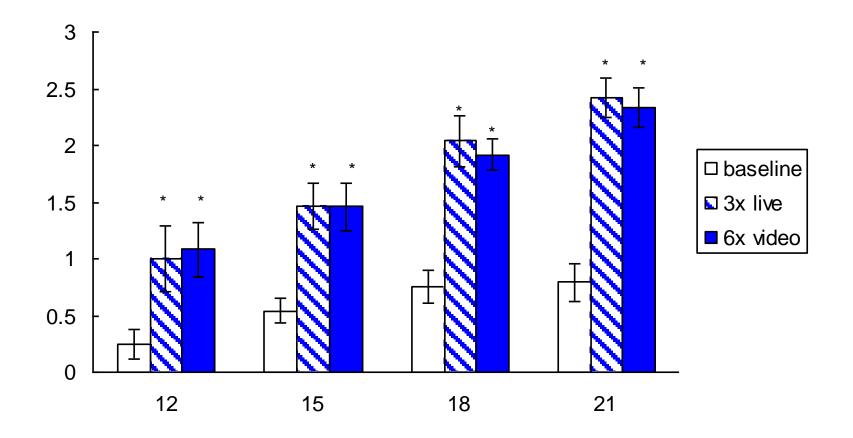
Crossing Dimensions is Difficult

Dimensional Transfer in 30 and 36-month-olds

15 month olds (Zack et al, 2009)

2.5 & 3 year olds (Zimmermann et al., 2016)

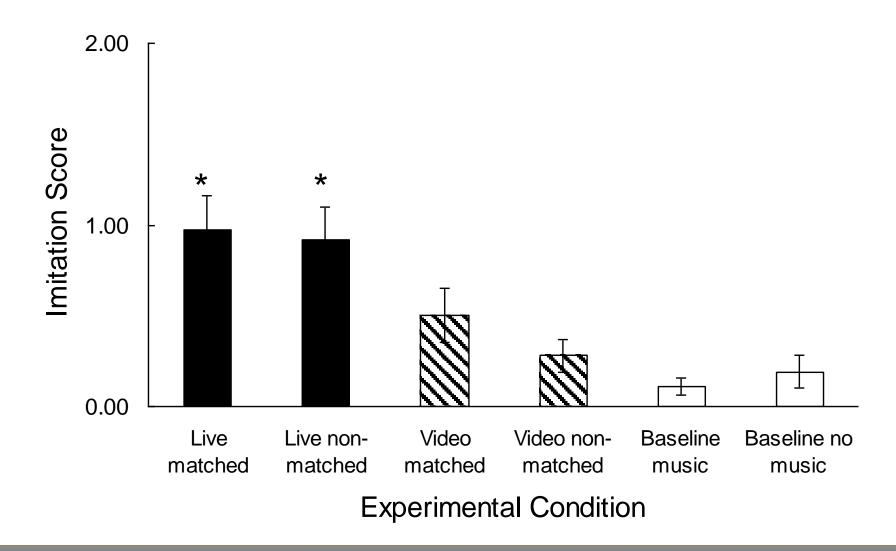
Conclusions


- Children can learn from television as young as 6 months of age.
- Children can learn to perform new actions on touchscreens
- Transfer across dimensions (3D-2D or 2D-3D) is challenging from 1 year to 3 years of life due to cognitive flexibility limitations
- Very similar patterns of learning from video and touchscreen.

Amelioration of Transfer Deficit Television repetition effects

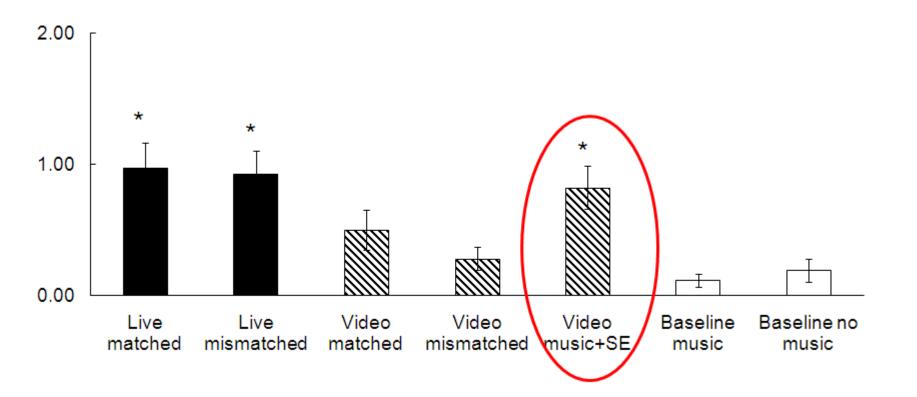
- Age
 - 12-, 15-, 18-, and 21 month-olds
- Manipulation
 - live 3x model, video 6x model, or control group.
- Delay
 - 24 hours

Amelioration of Transfer Deficit Television repetition effects


Barr, Garcia, Muentener, Fujimoto, & Chavez (2007)

Exacerbation of transfer deficit Background Music

- Cognitive overload happens easily


 Music during video processing
- Learning from media easily disrupted during infancy

Music to live demonstration

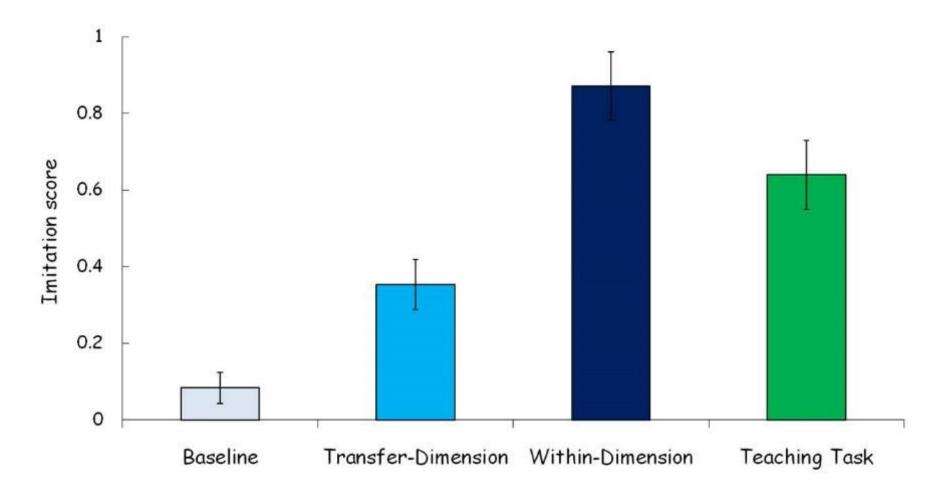
Barr , Shuck, Atkinson, Salerno & Linebarger, 2010

Amelioration of Transfer Deficit Music + Sound Effects

Barr , Shuck, Atkinson, Salerno & Linebarger, 2010

Opportunity: Social Mediation of Viewing

- Master skill in supportive social context
 - Skill internalized
 - Apply skill in new contexts
- Parents mediate looking patterns


 Direct child's attention to specific content
- More parent scaffolding should = ↑ attention & learning from TV

Opportunity: Social Cues Matter: Parental Scaffolding

Zack & Barr, 2016

Results – Transfer Success

Zack & Barr, 2016

Parental Scaffolding Quality

- Parental scaffolding defined
 - Elaborate verbal input
 - Emotional support, warmth and responsiveness
 - Structured teaching

Structure of maternal input

- Varied verbal input or repeated info
- Maternal reminiscing
 - Elaborative vs. repetitive mothers
 - Memory development, narrative skills, & story comprehension

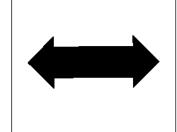
Proportion of "new" info

Diverse		Repetitive	
What does a cow say?	Ν	Look at this	Ν
Моо	Ν	Look at that	R
And there's another cow	N	Look at that	R
Look (child's name)	Ν	It's a screen	N
This is how I make him go moo	Ν	Doesn't that look like the other toy?	Ν
And look - 1 cow, 2 cows	N	Doesn't it look like the other toy?	R
I know, it's so funny	Ν	It's yellow	Ν
Can we make him go moo?	N	Looks like the other toy, doesn't it?	R

(adapted from Reese & Fivush, 1993)

Success associated with quality of parental scaffolding

• High parental scaffolding associated with 19x fold increase in the rate of transfer of learning


Parenting scaffolding

- Provides a warm and receptive context in a challenging learning task
- Provides a set of individualized language and joint visual attention cues to connect 2D and 3D information for child
- Context of media exposure may contribute as much as program content to any early learning from television

Barr et al., 2008; Fender, Richert, Wartella & Robb, 2010; Fidler, Zack & Barr, 2010; Pempek et al., 2010; Zack & Barr, 2016

Cognitive constraints e.g., developmental changes in memory flexibility

Context and caregiver: Social factors e.g., Contingent interactions

Perceptual differences e.g., degree of change

Content

between 2D and 3D

Hipp et al., 2016

Conclusions

- Learning is from 2D is
 - Cognitively demanding and complex task
 - Cognitive overload occurs easily
- Child
 - Transfer deficit from books, TV and touchscreens
 - Repetition and language cues help
- Content
 - Formal features processing differs as a function of age
 - Features can be added to enhance learning
- Context
 - Implication: scaffolding may be particularly important during early childhood.

Acknowledgements

- ELP Lab members—graduate students Elizabeth Zack, Natalie Brito, Laura Zimmermann and Sylvia Rusnak
 - NIH R03 HD043047. Infant Imitation from Television, Barr
 - NICHD R03 HD056084 How toddlers use representations from books and television
 - Peter Gerhardstein, NIH #1R01HD038315
 - Andrew Meltzoff NSF #SBE-035445
- NSF Grant (#0126014) to Sandra Calvert CDMC.
- NSF Grant (#1023772) to Rachel Barr and Peter Gerhardstein
 - Children and Screens: Institute of Digital Media and Child Development
 - James Mckeen Cattell Sabbatical Fellowship
- <u>www.zerotothree.org/resources/series/</u> <u>screen-sensesetting-the-record-straight</u>

Deborah Nichols Linebarger Editors

Rachel Barr -

Available for download: The white paper, key findings document, and tips for using screen modia with young children.

