Coatopathies: Genetic Disorders of Protein Coats

Juan S. Bonifacino, PhD

Section on Intracellular Protein Trafficking

Cell Biology and Neurobiology Branch

Eunice Kennedy Shriver National Institute of Child Health and Human Development

Section on Intracellular Protein Trafficking

Molecular mechanisms of protein and organelle distribution within the cell

Section on Intracellular Protein Trafficking

- Molecular mechanisms of protein and organelle distribution within the cell
- Dysfunction in human disease

Hermansky-Pudlak syndrome (HPS)

MEDNIK syndrome

Hereditary spastic paraplegias (HSP)

Progressive cerebral cerebellar atrophy (PCCA)

Electron Microscopy of a Pituitary Cell

Lydia Yuan

Sorting Signals

Sorting Signals

Adaptors

Adaptors

Protein Coats

Protein Coats

Clathrin-coated Vesicles

Clathrin-coated Vesicles

The Endomembrane System

Protein Coats in the Endomembrane System

Adaptor Protein (AP) Complexes

Coatopathies

Lumen Membrane

Cytosol

Adaptors	AP-1	AP-2	AP-3	AP-4	AP-5
Diseases (coatopathies)	MEDNIK syndrome (σ1A) Fried/Pettigrew syndrome (σ1B) Pustular psoriasis 15 (σ1C)		,	Hereditary spastic paraplegia (HSP) types 47 (β4), 50 (μ4), 51 (ε) and 52 (σ4)	Hereditary spastic paraplegia type 48 (ζ)

Coatopathies

Lumen

Cytosol

Core β 1

Hinge Ear

Adaptors	AP-1	AP-2	AP-3	AP-4	AP-5
Diseases (coatopathies)	MEDNIK syndrome (σ1A) Fried/Pettigrew syndrome (σ1B) Pustular psoriasis 15 (σ1C)		•	Hereditary spastic paraplegia (HSP) types 47 (β4), 50 (μ4), 51 (ε) and 52 (σ4)	Hereditary spastic paraplegia type 48 (ζ)

What is the Physiological Role of AP-3?

BLAST Search Identifies Garnet As Drosophila AP-3 δ

```
gi | 22832217 | gb | AAF48307.2 |
                                CG10986-PB [Drosophila melanogaster]
                                  Length = 1034
                  Score = 912 bits (2358), Expect = 0.0
 Identities = 497/848 (58%), Positives = 609/848 (71%), Gaps = 49/848 (5%)
Query: 1 MALKMVKGS-IDRMFDKNLQDLVRGIRNHKEDEAKYISQCIDEIKQELKQDNIAVKANAV 59
            MALK VKG+ +RMFDKNL DLVRGIRN+K++EAKYIS CI+EIKOEL+ODNI+VK NAV
Sbjct: 1 MALKKVKGNFFERMFDKNLTDLVRGIRNNKDNEAKYISTCIEEIKQELRQDNISVKCNAV 60
Query: 60 CKLTYLOMLGYDISWAAFNIIEVMSASKFTFKRIGYLAASQSFHEGTDVIMLTTNQIRKD 119
             KLTY+QMLGYDISWA FNIIEVMS+S+FT KRIGYLAASQ FH ++++MLTTN IRKD
Sbjct: 61 AKLTYIQMLGYDISWAGFNIIEVMSSSRFTCKRIGYLAASQCFHPDSELLMLTTNMIRKD 120
Query: 120 LSSPSQYDTGVALTGLSCFVTPDLARDLANDIMTLMSHTKPYIRKKAVLIMYKVFLKYPE 179
            L+S +QYD GVAL+GLSCF++PDL+RDLANDIMTLMS TKPY+R KAVL+MYKVFL+YPE
Sbjct: 121 LNSQNQYDAGVALSGLSCFISPDLSRDLANDIMTLMSSTKPYLRMKAVLMMYKVFLRYPE 180
Query: 180 SLRPAFPRLKEKLEDPDPGVQSAAVNVICELARRNPKNYLSLAPLFFKLMTSSTNNWVLI 239
            +LRPAFP+LKEKLEDPDPGVQSAAVNVICELAR+NPKNYL LAP+FFKLMT+STNNW+LI
Sbjct: 181 ALRPAFPKLKEKLEDPDPGVQSAAVNVICELARKNPKNYLPLAPIFFKLMTTSTNNWMLI 240,
Query: 240 KIIKLFGALTPLEPRLGKKLIEPLTNLIHSTSAMSLLYECVNTVIAVLISLSSGMPNHSA 299
            KIIKLFGALTPLEPRLGKKLIEPLTNLIHSTSAMSLLYEC+NTVIAVLIS+SSGMPNHSA
Sbjct: 241 KIIKLFGALTPLEPRLGKKLIEPLTNLIHSTSAMSLLYECINTVIAVLISISSGMPNHSA 300
```

Drosophila Pigmentation Mutants

Edith Wallace

AP-3 Defects in Drosophila Pigmentation Mutants

AP-3 Defects in Drosophila Pigmentation Mutants

<u>Subunit</u>	<u>Mutant</u>
δ	garnet
β3	ruby
μ3	carmine
σ3	orange

Sections of Wild-Type and Orange Eyes

Could Mutations in AP-3 Cause Pigmentation Defects in Humans?

CHAPTER

220

Albinism

Richard A. King Vincent J. Hearing Donnell J. Creel William S. Oetting

Hermansky Pudlak Syndrome Gene (HPS1)

- Melanocytes represer cells, yet they are exemelanin that account in the skin, bair, and number of critical st number of genes hav processes either direof these genes produtation, such as albini
- tation, such as albini
 2. Melanocytes in the s
 either directly, as in
 keratinocytes, or ind
 produced by other of

Hermansky-Pudlak syndrome (HPS) (MIM 203300) is a very rare type of albinism, but two isolated populations in Puerto Rico and Switzerland, provided an opportunity to map one of the HPS loci (HPS1) to chromosome 10q23.60-62 Both mapping strategies were based on a common founder for the mutated gene in these two isolates. The syntenic murine region contains the pale ear (ep) and ruby eye (ru), two candidate mouse models for HPS, and ep is the murine homologue of HPS1.63,64 The gene consists of 20 exons and spans 30.5 kb.299 In the initial isolation of the HPS1 gene, a 3.6-kb transcript was identified that encodes a 700-amino acid protein with a size of 79.3 kDa.63,299 Mutations in the 3' portion of this gene were associated with the HPS phenotype, indicating that this was the correct transcript responsible for the HPS phenotype.63 A second 1.5-kb transcript of the HPS1 gene that encodes a 324-amino acid protein was also identified. 67 The two cDNA transcripts are from the same gene and result from alternative splicing.67 Both transcripts are polyadenylated, and contain transmembrane domains and a putative melanosomal localization signal. The 3.6-kb transcript codes for a transmembrane protein containing two transmembrane domains, where the 1.5-kb transcript is missing the transmembrane domain in the carboxy end of the protein. There are no homologies between the putative HPS1 gene product and known proteins and its function are currently unknown. Initial analysis using confocal immunofluorescence has shown a cytoplasmic and membrane-associated distribution of the protein, suggesting a soluble and nonsoluble

and has been identified as a lysosomal trafficking regulator (LYST). This would explain the abnormal trafficking of melanogenic proteins found in the melanocytes. Several mutations in the mouse have been described. 304 The bg^{II} is a 5-kb deletion at the 3' end of the gene that disrupts three exons, which would result in a truncated protein with probable splicing abnormalities as well. The bg^{2I} mutation has a drastically reduced level of transcription, due to a 116-bp insertion of a LINE1 sequence in the coding region producing a truncated protein. 303 The bg^{8j} allele has a nucleotide substitution of a C to T at bp 2027, producing a nonsense mutation that is predicted to lack 1442 amino acids. 304

Ocular Albinism (OA1) (MIM 300500)

The ocular albinism type 1 gene (OA1; Nettleship-Falls X-linked OA) maps to chromosome Xp22. 305,306 Both the human (OA1) and the murine (Moa1) genes have been isolated. 307,308 In humans, the OA1 gene is divided into 9 exons within a 40-kb region. 307 The gene codes for a protein of 424 amino acids that contains several putative transmembrane regions. 307,309,310 The amino acid sequence does not share identity with any known proteins and its function is unknown. The gene is expressed almost exclusively in the retinal pigment epithelium 307 and cutaneous melanocytes, 310 and at a much lower level in the brain and adrenal tissues. 307 Although the clinical manifestations involve primarily the eye, the protein is a membrane glycoprotein localized to the melanosome in ocular and cutaneous melanocytes, indicating OA1 is really a type of OCA with changes in the eye and skin melanocytes. 310

Autosomal recessive disorder

- Autosomal recessive disorder
- Oculocutaneous albinism

Iris

Retina

- Autosomal recessive disorder
- Oculocutaneous albinism

Abnormal melanosomes

- Autosomal recessive disorder
- Oculocutaneous albinism

Abnormal melanosomes

Prolonged bleeding

Absence of platelet dense granules

- Autosomal recessive disorder
- Oculocutaneous albinism

Abnormal melanosomes

Prolonged bleeding

Absence of platelet dense granules

Fibrosis of the lungs, inflammatory colitis

- Autosomal recessive disorder
- Oculocutaneous albinism

Abnormal melanosomes

Prolonged bleeding

Absence of platelet dense granules

• Fibrosis of the lungs, inflammatory colitis

Abnormal lung lamellar bodies, ceroid lipofucsin in

macrophages

William Gahl and Colleagues (NICHD/NHGRI)

HPS Patients

Esteban Dell'Angelica

Mutations in β 3A in HPS-2

Signal-Mediated Sorting of Tyrosinase by AP-3

AP-3 Sorts Tyrosinase to Melanosomes

Heterogeneity of HPS

Human HPS Types

Photo Courtesy of Bill Gahl

HPS1

HPS2

HPS3

HPS4

HPS5

HPS6

HPS7

HPS8

HPS9

HPS10

Human and Mouse HPS Types

Photo Courtesy of Bill Gahl

•	PS1	Pal	le ear
ш			G Gai

HPS2 Pearl

HPS3 Cocoa

HPS4 Light ear

HPS5 Ruby eye-2

HPS6 Ruby eye

HPS7 Sandy

HPS8 Reduced pigmentation

HPS9 Muted

HPS10 Mocha

Cappuccino

Pallid

Subtle gray

Gunmetal

Biogenesis of Lysosome-Related Organelles Complexes (BLOCs)

BLOC-1

BLOS1

BLOS2

Snapin

Dysbindin

Pallidin

Muted

Cappuccino

BLOS3

BLOC-2

HPS3

HPS5

HPS6

BLOC-3

HPS1

HPS4

Biogenesis of Lysosome-Related Organelles Complexes (BLOCs)

BLOC-One-Related Complex (BORC)

BLOC-1

BLOS1

BLOS2

Snapin

Dysbindin

Pallidin

Muted

Cappuccino

BLOS3

BLOC-2

HPS3

HPS5

HPS6

BLOC-3

HPS1

HPS4

BORC

BLOS1

BLOS2

Snapin

Myrlysin

Lyspersin

Diaskedin

MEF2BNB

KXD1

BORC Couples Lysosomes and SVPs to Kinesins

BORC Couples Lysosomes and SVPs to Kinesins

BORC Couples Lysosomes and SVPs to Kinesins

BORCS7/Diaskedin: major schizophrenia susceptibility gene

Jing Pu, Charly Guardia; Kang Shen's lab at Stanford

Does BLOC-1 Couple Melanosomal Carriers to Kinesin?

AP-3 is involved in the biogenesis of lysosome-related organelles in flies, mice and humans

AP-3 is involved in the biogenesis of lysosome-related organelles in flies, mice and humans

Mutations in AP-3 are the cause of Hermansky-Pudlak syndrome type 2

AP-3 is involved in the biogenesis of lysosome-related organelles in flies, mice and humans

Mutations in AP-3 are the cause of Hermansky-Pudlak syndrome type 2

AP-3 mediates the sorting of tyrosinase from endosomes to melanosomes by recognition of a dileucine sorting signal

AP-3 is involved in the biogenesis of lysosome-related organelles in flies, mice and humans

Mutations in AP-3 are the cause of Hermansky-Pudlak syndrome type 2

AP-3 mediates the sorting of tyrosinase from endosomes to melanosomes by recognition of a dileucine sorting signal

BLOC-1, BLOC-2 and BLOC-3 are novel components of a molecular machinery for the biogenesis of lysosome-related organelles

BORC couples lysosomes and SVPs to kinesins

BLOC-1 may act in a similar manner to couple melanosome-bound carriers to kinesins

Thanks!

Esteban Dell'Angelica Bill Gahl Chean Eng Ooi (NICHD/NHGRI) Chris Mullins

Kengo Moriyama Mickey Marks José Martina (U. Pennsylvania)

Lisa Hartnell Chris Schindler

Jing Pu Charly Guardia (CBMB, NICHD) Graça Raposo (Curie Institute)

Eunice Kennedy Shriver National Institute of Child Health and Human Development