Presentation Outline

Introduction to Research Designs
- Stages of a Clinical Trial

Stage 1 - Development
- Traditional Clinical Trial Design Decisions
- Maximizing Validity of Research Conclusions

Stage 2 - Execution
- Medical Monitoring
- Interim Analyses: Safety and Efficacy Monitoring

Stage 3 - Analysis, Interpretation and Reporting

Role of Quantitative Scientists in Clinical Research

Learning Objectives and Key Messages
Research Design Process

Critical to research success
Partnership (internal and/or external):
- Scientists (Clinical, Quantitative, Regulatory)
- Operations Specialists (e.g., Data Management, Supplies)
- Research Partners and Customers
Dynamic process

Goal:
Maximizes the validity of research conclusions that endure scientific peer review and ensure research conclusions that shape evidence-based public health policy and provide value to patients, providers and payers

Key Guiding Principles:
- Design based on achieving specific research conclusions
- Spending time on design quality will enable effective execution

Background – "Research Design 101": Clinical Research Design Tool Box

OBSERVATIONAL
- Descriptive
 - Case history/case studies
 - Cross-sectional
- Analytic
 - Prospective cohort
 - Retrospective Case-control

INTERVENTIONAL
- Single group
- Two or more groups
 - Non-randomized
 - Randomized

Background: Evidence-Based Medicine* - Qualification of Evidence
U.S. Preventive Services Task Force

Ranking Evidence:
- Level I: Evidence obtained from at least one properly designed randomized controlled trial
- Level II-1: Evidence obtained from well-designed controlled trials without randomization
- Level II-2: Evidence obtained from well-designed cohort or case-control analytic studies, preferably from more than one center or research group
- Level II-3: Evidence obtained from multiple time series with or without the intervention. Dramatic results in uncontrolled trials might also be regarded as this type of evidence
- Level III: Opinions of respected authorities, based on clinical experience, descriptive studies, or reports of expert committees

* http://en.wikipedia.org/wiki/Evidence-based_medicine
Clinical Trial [Level II-1]

- "...a prospective study comparing the effect and value of intervention(s) against a control in human subjects"

Ideal Clinical Trial [Level I]

- "...the ideal clinical trial is one that is randomized and double-blinded."

[Friedman, Furberg and DeMets, 1996]

Background: Qualification of Evidence

Understand the strengths and weaknesses of randomized controlled trials (Level II-2):

- Randomized trials offer one kind of knowledge but prevent us from seeing other properties of a medical intervention
- Observational studies can help elucidate those properties but may introduce new blind spots
- To understand everything we should know about a medical intervention, we must do both kinds of research with rigor and humility

[Avorn, 2007]

Stages of a Clinical Trial (Decision Making Process*)

- Develop
 - Framing the issues
 - Study design
 - Preparation (e.g., site selection, manuals/SOPs, CRFs, training)
- Execute
 - Gathering intelligence
 - Enroll
 - Follow-up
 - Monitor (e.g., data review, safety review, medical monitoring, interim analyses)
- Report
 - Coming to Conclusions/Learning from Experience
 - Data lock
 - Planned and unplanned analyses
 - Interpretation
 - Regulatory submission
 - Publication and presentation
 - Data base archiving

Presentation Outline

Introduction to Research Designs
- Stages of a Clinical Trial

Stage 1 - Development
- Traditional Clinical Trial Design Decisions
 - Maximizing Validity of Research Conclusions

Stage 2 - Execution
- Medical Monitoring
- Interim Analyses: Safety and Efficacy Monitoring

Stage 3 - Analysis, Interpretation and Reporting
- Role of Quantitative Scientists in Clinical Research
- Learning Objectives and Key Messages

Development – Traditional CT Design Decisions: Framing the Question

The Research Statement
This study demonstrated a significant improvement in _______ among participants with ________ who received ________ as compared to participants who received ________.

Basic Research Design Decisions (What is the Question?)
To evaluate the efficacy/safety of ________ in participants with ________ as assessed by ________.

Development – Traditional CT Design Decisions: Number/Types of Intervention Groups

“To evaluate the efficacy/safety of ________”

Intervention Group(s): Protocol procedures, Treatment schedule, Multiple regimens (e.g., dose ranging, factorial designs, …).

Control Group(s): Placebo Control, Active Control, Background Control (“add-on” trial), Add Standard of Care to both!!
Eligibility Criteria

Inclusion Criteria
- Defines target population
- Disease
- Demographics
- History

Exclusion Criteria
- Eliminate subsets of target population
- Non-compliance with treatment/follow-up
- Potentially harmed by intervention
- Intervention potentially ineffective

Note: Eligibility Criteria Changes by Development Phase

As an intervention regimen progresses from early phase clinical trials (e.g., pilot or proof of concept trials) through later phase clinical trials (e.g., pivotal or registration trials) the eligibility criteria (especially the exclusion criteria) tends to change from exclusive criteria to more inclusive criteria.

Primary and Secondary Outcomes

Types of outcomes
- Ultimate (e.g., major morbidity, mortality)
- Staging of severity (e.g., Change in a functional outcome)
- Functional (e.g., BP, glucose)

Primary/Secondary outcomes:
- Clinically relevant and compelling
- Responsive to treatment
- Measured precisely, reliably

Research Objectives and Hypotheses

Basic Research Design Decisions (What is the Question?)

To evaluate the efficacy of intervention regimen vs. control regimen

In participants with

as assessed by

Research Objectives
- General goals to evaluate intervention effects

Research Hypotheses
- Specific, testable statements addressing objectives
- Success criteria pre-defined
- Types:
 - Superiority
 - Non-inferiority
Presentation Outline

Introduction to Research Designs
- Stages of a Clinical Trial

Stage 1 - Development
- Traditional Clinical Trial Design Decisions
- Maximizing Validity of Research Conclusions

Stage 2 - Execution
- Medical Monitoring
- Interim Analyses: Safety and Efficacy Monitoring

Stage 3 - Analysis, Interpretation and Reporting
- Role of Quantitative Scientists in Clinical Research
- Learning Objectives and Key Messages
MINIMIZE the following:

- **Chance** (False Positive and False Negative Conclusions)
 - Design (e.g., Sample Size Determination)
 - Analysis (e.g., Control of False Positive Rate)
- **Bias**
 - Selection (e.g., Intention-to-Treat Design/Analysis)
 - Information (e.g., Masking of Interventions/Outcomes)
- **Confounding**
 - Baseline (e.g., Randomization)

DEFINITIONS:

- **False Positive**: Concluding that a specified relationship does exist between an intervention and outcome when in reality such a relationship does not exist (Type I error)
- **False Negative**: Concluding that a specified relationship does not exist between an intervention and outcome when in reality such a relationship does exist (Type II error)
- **Statistical Power** (True Positive Rate) = 1 - False Negative Rate

GOAL: During the design stage, minimize the potential for False Positives and False Negatives

"Clinical trials should have sufficient statistical power to detect differences between groups considered to be of clinical interest. Therefore, calculation of sample size... is an essential part of planning."

[Friedman, Furberg and DeMets, 1996]
Development – Maximize Validity of Research Conclusions
Minimize Information Bias

DEFINITION:
Information Bias

- Distortion in relationship of the intervention and outcome due to biased assessment of the intervention and/or outcome
- Biased assessment results in under- or over-estimation of the intervention and outcome relationship

GOAL:
Avoid/minimize during design/execution

Examples:
- Mask the intervention to patient, provider and sponsor
- Mask the outcome to the provider and sponsor
- Mask the intervention to those adjudicating outcomes

Development – Maximize Validity of Research Conclusions
Minimize Confounding

DEFINITION:
Confounding:

- Distortion in the intervention and outcome relationship due to a third factor (i.e., confounder)
 - Associated with intervention (not a consequence)
 - Associated with outcome
- Results in under- or over-estimation of the intervention and outcome relationship

GOAL:
Avoid/minimize during design

Example:
Random assignment in intervention studies

Development: Peer Review of a Customer-Driven Research Design

Peer Review Process:
- Involves peers of the research design process partners
 - Scientists, Ops Specialists, Partners, Customers
- Levels of Peer Review:
 - Protocol Development Team
 - Scientific Advisory Committee
 - Protocol Review Committee

Goals – Peer Review Process:
- Ensure appropriateness of the individual research design decisions (functional expertise)
- Ensure alignment among research design decisions (clinical trialist and/or cross-functional expertise)
Presentation Outline

Introduction to Research Designs
- Stages of a Clinical Trial

Stage 1 - Development
- Traditional Clinical Trial Design Decisions
- Maximizing Validity of Research Conclusions

Stage 2 - Execution
- Medical Monitoring
- Interim Analyses: Safety and Efficacy Monitoring

Stage 3 - Analysis, Interpretation and Reporting

Role of Quantitative Scientists in Clinical Research

Learning Objectives and Key Messages

Stages of a Clinical Trial

DEVELOP
- Study design
- Preplanning (e.g., site selection, manuals/SOPs, CRFs, Training)

EXECUTE
- Enroll
- Follow-up
- Monitor (e.g., data, interim; safety
 - interim analysis)

REPORT
- Data lock
- Planned and unplanned analyses
- Interpretation
- Regulatory submission
- Publication and presentation
- Data base archiving

In Pharmaco-Epidemiology:

"...to understand the drug.
 it is necessary to understand the disease.”
 [Guess, Jacobsen, Germain, et al., 1995]

Goals of medical monitoring:

"...to understand the tables/figures generated during final analysis and reporting of a clinical trial.
 it is necessary to understand the database that generated the tables/figures.”

To understand the data, do not wait for the final data base; start understanding the information generated as a result of the protocol’s research design as soon as feasible.
Execution: Medical Monitoring

- Ongoing review of accumulating, masked, aggregated clinical/laboratory data:
 - Ensuring patient safety and study integrity
 - Understanding the accumulating safety and efficacy data base before final analysis/reporting
- Patient safety enhanced by looking at safety data in aggregate to spot trends of concern (vs. visual inspection of stream of individual patient data)
- Study integrity enhanced by the clinical research team learning and understanding their accumulating (masked) safety and efficacy data before final analysis/reporting; and taking appropriate action, if needed

Execution: Interim Analyses – Safety and Efficacy Monitoring

- Ongoing review of accumulating, unmasked, aggregated clinical/laboratory data:
 - Ensure patient safety
 - Ensure efficacy objectives are achievable
 - Enabled by independent Data Monitoring Committee (DMC):
 - Pivotal trial: external DMC
 - Non-Pivotal trial: internal DMC
- Patient safety enhanced by looking at safety data by treatment group to spot trends of concern and modify protocol, if needed.
- Interim analysis of efficacy data:
 - Futility used to discontinue ineffective interventions
 - Early “very good” efficacy findings may be realistic

Presentation Outline

Introduction to Research Designs
- Stages of a Clinical Trial
 - Stage 1 - Development
 - Traditional Clinical Trial Design Decisions
 - Maximizing Validity of Research Conclusions
 - Stage 2 - Execution
 - Medical Monitoring
 - Interim Analyses: Safety and Efficacy Monitoring
 - Stage 3 - Analysis, Interpretation and Reporting
 - Role of Quantitative Scientists in Clinical Research
 - Learning Objectives and Key Messages
The final analysis, interpretation and reporting of information collected during a research study is impacted by decisions made during the design stage and by the performance and modification of the research design during the execution stage.

“One fundamental principle is that statistical analysis of results, no matter how cleverly done, can never rescue a poorly designed <or executed> study.”

- Stuart Pocock (1983)

Stages of a Clinical Trial

- Develop
 - Study design
 - Preparation (e.g., site selection, manuals/SOPs, CRFs, training)

- Execute
 - Enroll
 - Follow-up
 - Monitor (e.g., data review, safety review, medical monitoring, interim analyses)

- Report
 - Data lock
 - Planned and unplanned analyses
 - Interpretation
 - Regulatory submission
 - Publication and presentation
 - Data base archiving

Analysis, Interpretation and Reporting:

Final Analysis - Planned v. Unplanned Analyses

- Planned Analyses (Statistical Analysis Strategy):
 - Analysis strategy is driven by the research design decisions
 - Detailed analysis strategy is documented in an approved protocol’s “Statistical Analysis Plan” section

- Unplanned (Post Hoc) Analyses:
 - Reasons:
 - Explain conclusions based on the planned analyses
 - Generate new hypotheses
 - Informative in designing new research protocols

Caution: Unplanned analyses increase false positive rate
Analysis, Interpretation and Reporting:
Minimize Chance During Planned and Unplanned Analyses

False Positive:
- Concluding that a specified relationship does exist between an intervention and outcome when in reality such a relationship does not exist (Type I error)

Issue: “Torture data enough, it will tell you anything.”

Sources of potential inflation of false positive error rate:
- Multiple outcomes
- Multiple interventions
- Multiple time points
- Subgroups

This “multiplicity” must be addressed scientifically (e.g., protocol-specified multiple comparison procedures) or must be clearly articulated during the interpretation of the research results.

Analysis, Interpretation and Reporting:
How Big a Problem is “Multiplicity”??

<table>
<thead>
<tr>
<th># of Tests</th>
<th>Chances of 1+ False Positive</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0500</td>
</tr>
<tr>
<td>2</td>
<td>0.0975</td>
</tr>
<tr>
<td>3</td>
<td>0.1426</td>
</tr>
<tr>
<td>4</td>
<td>0.1855</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>10</td>
<td>0.4013</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>50</td>
<td>0.9231</td>
</tr>
</tbody>
</table>

Analysis, Interpretation and Reporting:
Publication and Presentation of Research Conclusions

“The Essentials”
Message #5

“The investigator has an obligation to review critically the study and its findings and to present sufficient information so that readers can properly evaluate the trial”

[Friedman, Furberg and DeMets, 1996]

- What was done compared to what we (they) said we (they) were going to do...
- Know the strengths and weaknesses of the research design selected including its execution
Presentation Outline

Introduction to Research Designs
- Stages of a Clinical Trial

Stage 1 - Development
- Traditional Clinical Trial Design Decisions
- Maximizing Validity of Research Conclusions

Stage 2 - Execution
- Medical Monitoring
- Interim Analyses: Safety and Efficacy Monitoring

Stage 3 - Analysis, Interpretation and Reporting
Role of Quantitative Scientists in Clinical Research

Learning Objectives and Key Messages

Clinical Trials Workshops: Clinical Trial Research Team

- Clinical Scientists (subject matter experts) Fellows
- Regulatory Scientists NICHD Staff
- Quantitative Scientists Liz and Ray
- Operation Specialists (project, data, site, …) Faculty
- External Scientific Advisors Faculty
- Others (ethicist, patient advocates, …)

Quantitative Scientists: Proactive Partners During Design, Execution, Analysis and Interpretation of Scientific Investigations

Biostatisticians:
- Clinical research (in addition to basic and pre-clinical research)
- Research design options and risk mitigation
- Execution stage quality and change control and risk mitigation
- Analysis and interpretation including strengths/weaknesses
- Presentation and publication development including graphics

Epidemiologists:
- Experts in observational/data base studies and outcomes research
- Define diseases including affected population & burden of illness
- Assist with clinical trial protocol development decisions
- Execution stage quality and risk mitigation

Health Economists:
- Experts in burden of illness, cost-benefit modeling and outcomes research
- Assist with clinical trial protocol development decisions

Scientific Programmers:
- Programming support for quantitative scientists
- Research design programming (e.g., trial simulation)
- Enable regulatory- and publication-based analysis and reporting
Presentation Outline

Introduction to Research Designs
- Stages of a Clinical Trial

Stage 1 - Development
- Traditional Clinical Trial Design Decisions
- Maximizing Validity of Research Conclusions

Stage 2 - Execution
- Medical Monitoring
- Interim Analyses: Safety and Efficacy Monitoring

Stage 3 - Analysis, Interpretation and Reporting
- Innovative Clinical Trial Designs
- Adaptive Designs

Role of Quantitative Scientists in Clinical Research

Learning Objectives and Key Messages

Research Design
- Customer-driven collaborative process with peer review that:
 - Maximizes the validity of research conclusions that endure scientific community scrutiny
 - Ensures evidence-based conclusions that shape public health policy
 - Provides value to patients, providers and payers

- The right design for the right "knowledge" base!
- Design with the end in mind!
- Design takes time!

Final Analysis of Research Results
- Impacted by decisions made during the design stage
- Impacted by performance and modification of the research design during the execution stage

“One fundamental principle is that statistical analysis of results, no matter how cleverly done, can never rescue a poorly designed study.”
- Stuart Pocock (1983)

- Design/execution of a research study eats the final analysis of results for lunch!
- Reward researchers for participant retention during execution, not just participant recruitment
- A "clever" analysis of data obtained is more satisfying than a "clever" assumption about missing data
Learning Objectives and Key Messages

Interpretation and Reporting

- Requires a clear understanding of the strengths and weaknesses of each stage during a clinical trial including:
 - Research design developed including its numerous options
 - Execution of the research design
 - Statistical analysis of results

“The investigator has an obligation to review critically the study and its findings and to present sufficient information so that readers can properly evaluate the trial”

— Friedman, Furberg and DeMets (1996)

References: