Skip Navigation
  Print Page

Marini Lab: Bone and Extracellular Matrix Branch

Skip sharing on social media links
Share this:
Skip Internal Navigation

Overview

In an integrated program of laboratory and clinical investigation, the Bone and Extracellular Matrix Branch (BEMB) studies the molecular biology of the heritable connective tissue disorders osteogenesis imperfecta (OI) and Ehlers-Danlos syndrome (EDS). Our objective is to elucidate the mechanisms by which the primary gene defect causes skeletal fragility and other connective-tissue symptoms and then apply this knowledge to the treatment of children with these conditions. Recently, we identified the long-sought cause of recessive OI. Discoveries of defects in collagen modification generated a new paradigm for collagen-related disorders of matrix. We have established that structural defects in collagen cause dominant OI while defects in the components of a complex in the endoplasmic reticulum that modifies collagen cause recessive OI. Our challenge now is to understand the cellular and biochemical mechanisms of recessive OI. We also generated a knockin murine model for OI with a classical collagen mutation and are using the model to study disease pathogenesis and the skeletal matrix of OI, the effects of pharmacological therapies, and approaches to gene therapy. Our clinical studies involve children with types II and IV OI, who form a longitudinal study group enrolled in age-appropriate clinical protocols for the treatment of their condition.

​​​​​​​​​​​​​​ ​​​​​​​​​​​​​​​
Last Updated Date: 11/30/2012
Last Reviewed Date: 11/30/2012

​Contact Information

Name: Dr Joan C Marini
Senior Investigator
Bone and Extracellular Matrix Branch
Phone: 301-594-3418
Fax: 301-480-3188
E-mail: marinij@mail.nih.gov

Staff Directory
Vision National Institutes of Health Home BOND National Institues of Health Home Home Storz Lab: Section on Environmental Gene Regulation Home Machner Lab: Unit on Microbial Pathogenesis Home Division of Intramural Population Health Research Home Bonifacino Lab: Section on Intracellular Protein Trafficking Home Lilly Lab: Section on Gamete Development Home Lippincott-Schwartz Lab: Section on Organelle Biology