1 Overview

This document describes a R package to implement the functional linear models for association analysis of quantitative traits. Section 2 briefly describes the installation of the program. Section 3 explains how to run the program using one example. Section 4 offers explanation of the results and warnings to use the programs. Section 5 provides some suggestions and parameter choices for real data analysis.

The theoretical basis for this program is given in our research paper in References. Please refer to the reference if you use the program in any published work. In case of suggestions and questions and/or problems, you can contact us via e-mail (fanr@mail.nih.gov).

2 Download and Installation

The package is written in R. Download R codes “FLM_fixed_model.R”, “FLM_beta_smooth_only.R”, “FLM_FPCA.R”, and “FLM_FPCA_no_position.R”, and example files of “Example_FLM.R” and “Example_FLM_multiple_gene_analysis.R” from FLM_web.zip. Plus, you will need datasets from data.zip to run the examples. Put the files in a directory you may access.

3 How to Run the Program

3.1 One Gene Analysis

The analysis needs libraries fda, MASS, and Matrix in R package. Make sure to install them before running our codes. Open the “Example_FLM.R” file on an R Console in a PC window. Change the paths leading to the directories of the package “FLM_fixed_model.R”, “FLM_beta_smooth_only.R”,

1
"FLM_FPCA.R", "FLM_FPCA_no_position.R", and the datasets on your computer. Then, you may run the program. The following results are based on the datasets in data.zip by "R i386 3.1.2".

```r
> flm_fixed_model(pheno, mode = "Additive", geno, pos, order, bbasis,
fbasis, gbasis, covariate, base = "bspline", interaction = FALSE)
$LRT
[1] 1
$Chisq
[1] 1
$F
[1] 1

> flm_fixed_model(pheno, mode = "Additive", geno, pos, order, bbasis,
fbasis, gbasis, covariate, base = "fspline", interaction = FALSE)
$LRT
[1] 0.6598117
$Chisq
[1] 0.6598117
$F
[1] 0.660154

> flm_beta_smooth_only(pheno, mode = "Additive", geno, pos, order, bbasis,
covariate, base = "bspline", interaction = FALSE)
$LRT
[1] 0.774038
$Chisq
[1] 0.774038
```

2
F

[1] 0.7732432

> flm_beta_smooth_only(phenomenon, mode = "Additive", genotype, position, order, fbasis,
 covariate, base = "fspline", interaction = FALSE)

LRT

[1] 0.6598117

$Chisq$

[1] 0.6598117

F

[1] 0.6601542

flm_fpca_no_position(phenomenon, mode = "Additive", genotype, covariates = covariate,

 kz = 20, kb = 10, smooth.cov=FALSE, family = "gaussian")

LRT

[1] 0.774038

$Chisq$

[1] 0.774038

F

[1] 0.7732432

> flm_fpca(phenomenon, mode = "Additive", genotype, covariates = covariate, position,

 kz = 20, kb = 10, smooth.cov=FALSE, family = "gaussian")

LRT

[1] 0.6621036

$Chisq$
3.2 Multiple Gene Analysis

Then, you may get one csv file named “y_mode=Additive_order=4_bbasis=15_fbasis=25.csv” after running “Example_FLM_multiple_gene_analysis.R” file. Note that only two genes are analyzed, but you may add more for multiple gene analysis.

4 Explanation of the Results and Warnings

As shown in the Section 3, our program can output 3 p-values based on likelihood ratio test (LRT), χ^2, and F-distributed test. The LRT is the same as χ^2, which may inflate type I error rates when sample size is smaller than or equal to 1,000 (Fan et al. 2013, p733, top of the left column). The F-distributed test has conservative and accurate type I error rates (Fan et al. 2013). If you use the R codes to analyze your data, we recommend to report the p-values of F-distributed test. If you analyze large sample data, both LRT and F-distributed tests can be used.

5 Suggestions and Parameters for Real Data Analysis

In this documentation, we present four R functions to perform gene-based association analysis of quantitative traits. In practice, one may use one of them for data analysis. We suggest to use flm_fixed_model by either B-spline or Fourier spline basis functions. We also suggest the following
parameters for a data analysis:

order = 4
bbasis = 15
gbasis = 15
fbasis = 25
gbasis = 25

6 References