Neural Repair and Rehabilitation

NICHD 50th Anniversary Colloquium
December 5, 2012

Michael E. Selzer, MD, PhD
Director, Shriners Hospitals Pediatric Research Center
(Center for Neural Repair and Rehabilitation)
NeuroRehabilitation Combines the Strengths of Two Important Medical Traditions

Rehabilitation Medicine
- Advanced team approach
- Sophisticated outcomes designs
- Quality of life

Neurology
- Pathophysiology
- Cell and molecular biology
- Tradition of research

NeuroRehabilitation
This concept has informed the approaches taken by both the NCMRR and the VA RR&D Service.
Scope of Rehabilitation Research

- **REPAIR**
 - Basic research to repair injured organs and tissues
 - Translational research to bring basic discoveries to clinical use

- **REPLACE**
 - Prosthetics/robotics research to replace what cannot be repaired

- **RESTORE**
 - Physiological function
 - Social integration
Significant Advances in NeuroRehabilitation Research Since NCMRR Started

- Application of Evidence-based practice to Rehabilitation
- Expanded BCI and robotic research
- Adaptation of multicenter, prospective randomized, controlled clinical trials for rehabilitation treatments (SCILT, Bruce Dobkin; EXCITE, Steve Wolf; LEAPS, Pam Duncan et al.; now many others)
- Adoption of basic science
 - Plasticity
 - Repair
- Translation of basic research on neural repair to clinical trials (Anti-Nogo; RhoA inhibitor; Autologous bone marrow progenitor cells for SCI in children, James Baumgartner; Autologous CNS stem cells for thoracic SCI, Armin Curt; many, many others in US and abroad) clinicaltrials.gov
Scope of Rehabilitation Research

- **REPAIR**
 - Basic research to repair injured organs and tissues
 - Translational research to bring basic discoveries to clinical use

- **REPLACE**
 - Prosthetics/robotics research to replace what cannot be repaired

- **RESTORE**
 - Physiological function
 - Social integration
Brain-Computer Interfaces for Communication and Motor Control

Some of these neuroprostheses are commercial products; others are available in research settings.

1. Electrode array developed by Richard Norman, U. of Utah (a, b)
2. Implanted in R precentral gyrus (c)
3. Wired to computer, which controls cursor and other displays on monitor (BrainGate® system) (d)

Brain-Computer Interface to Operate Prosthetic Devices

Scope of Rehabilitation Research

- **REPAIR**
 - Basic research to repair and injured organs and tissues
 - Translational research to bring basic discoveries to clinical use

- **REPLACE**
 - Prosthetics/robotics research to replace what cannot be repaired

- **RESTORE**
 - Physiological function
 - Social integration
Challenges for Repairing the Injured Nervous System

• Wrong experimental paradigms of axon growth

• Scale - animal size

• Initial clinical trials employ patients least likely to respond

• Personalized medicine – Rare diseases; common disease type
Four Modes of Axon Growth

• Early Growth Cone Mediated Axon Pulling
 – Actin-Myosin molecular motor
 – Embryonic mechanism, but ? relevance to regeneration

• Axon Stretching
 – After initial target contacts made
 – In whales, can be 3 cm/day

• Collateral Sprouting

• Regeneration
Why Worry About Regeneration vs. Sprouting?

Partial SCI

- Injury
- Collateral Sprouting

Complete SCI (ASIA A)

- Injury
- No Collateral Sprouting
Does Neutralizing Nogo Enhance Axon Regeneration?

• Approaches
 – Antibodies to Nogo
 – Nogo-66 inhibitory peptide (NEP1-40)
 – Soluble piece of NgR (NgR(310)ecto-Fc)
 – Nogo knockouts
 – NgR knockouts
 – Triple knockout of Nogo, MAG and MOG

• Results
 – CST – Increase collateral sprouting but no regeneration
 – Other axon types may regenerate, but not sure

• Concerns: Antibodies to Nogo are in clinical trials (Novartis) limited to ASIA A. Will they succeed?
Similar Concerns can be Raised About Other Therapies Based on Neutralizing Growth Cone Collapse

- Rho-A Inhibitor (Cethrin)
- Chondroitinase-ABC
- Cyclic AMP
Axon Tips During the Period of Regeneration Lack Filopodia and Lamellipodia

A

Stained for F-Actin

B1

Live

B2

Stained for NF

Embryonic Chick Growth Cones in Tissue Culture

Regenerating Lamprey Spinal Cord Axons
Signaling Pathways for Regeneration

- Cyt
- Gp130 complex
- JAK-2
- Trk
- PI3K
- NT
- PIP2
- PIP3
- PTEN
- SOCS-3
- STAT-3
- mTOR
- Nogo complex
- NgR complex
- MAG
- MOG
- Nogo
- PIP3
- cAMP
- Akt
- CREB
- RhoA
- ROCK
- rPTP
- REGENERATION
Intrinsic Growth Control of Mature CNS Neurons

- Apoptosis
- Degenerating
- Myelin debris
- Glial scar

Cell Survival → Intrinsic Growth Ability → Extrinsic Environment

PTEN KO Promotes Axon Regeneration

AAV-Cre

AAV-GFP
Challenges for Repairing the Injured Nervous System

• Wrong experimental paradigms of axon growth

• Scale - animal size
 – Progressive loss of regenerative ability after axotomy.
 – Rate of regeneration is similar in all species.
 – In humans, regenerative ability from proximal lesions wanes before targets are reached.
Progressive Loss of Regenerative Ability After Axotomy

Challenges for Repairing the Injured Nervous System

• Wrong experimental paradigms of axon growth
• Scale - animal size
• Initial clinical trials employ patients least likely to respond
 – When treatment for SCI involves highly invasive procedures, *e.g.*, exposing spinal cord, initial clinical trials are performed on complete spinal cord injury, since those patients have less to lose.
 – These patients have few spared axons, so collateral sprouting is less likely to be beneficial.
 – Non-invasive therapies are more likely to succeed.
Systemically Deliverable Blockers of Growth Inhibition

Shuxin Li

TAT = Transactivator of Transcription (GRKKRRQRRRC) to make peptide permeant
Challenges for Repairing the Injured Nervous System

• Wrong experimental paradigms of axon growth
• Scale - animal size
• Initial clinical trials employ patients least likely to respond
• Personalized medicine – Rare diseases; common disease type
The Challenge of Personalized Medicine: Gene Therapy

- Individually, rare diseases
- Insufficient attention by NIH
- Partnerships between patient families and qualified investigators willing to devote substantial time to preclinical and clinical research on the disease
- Institutional framework – “Center for Personalized Gene Therapy”?
LCA8: Gene- and Cell-Based Therapies

- Survival and Integration
- Differentiation
- Synapse formation
- ERG recovery

GFP (+) Retinal Progenitor Cells
P0 → P14
Conclusions

• With encouragement from the NCMRR (and VA RR&D), “rehabilitation”, and in particular neurorehabilitation, has expanded its meaning to include the application of research on neural repair and plasticity to restore function in persons with disabilities.

• Scientific fields that are contributing include:
 – Robotics
 – Evidence-based medicine
 – Functional plasticity (cognitive, sensory and motor)
 – Neural repair (axon regeneration, cell replacement, remyelination, gene therapy)

• The benefits of scientific research are both direct and indirect. Adoption of a basic science framework encourages evidence-based clinical practice, raises the impact of the field of rehabilitation medicine (e.g., NNR) and attracts the best trainees to the field.