Skip Navigation
  Print Page

Backwards signals appear to sensitize brain cells, rat study shows

Skip sharing on social media links
Share this:

The reverse firing of electrical signals during sleep and at rest, appearing to reset the cell and priming it to learn new information.

During waking hours, electrical signals travel from dendrites—antenna-like projections at one end of the cell-- through the cell body. From the cell body, they then travel the length of the axon, a single long projection at the other end of the cell. This electrical signal stimulates the release of chemicals at the end of the axon, which bind to dendrites on adjacent cells, stimulating these recipient cells to fire electrical signals, and so on. When groups of cells repeatedly fire in this way, the electrical signals increase in intensity. Dr. Bukalo and her team examined electrical signals that traveled in reverse―from the cell’s axon, to the cell body, and out its many dendrites. The reverse firing, depicted in this diagram, happens during sleep and at rest, appearing to reset the cell and priming it to learn new information.
Last Updated Date: 03/14/2013
Last Reviewed Date: 03/14/2013
Vision National Institutes of Health Home BOND National Institues of Health Home Home Storz Lab: Section on Environmental Gene Regulation Home Machner Lab: Unit on Microbial Pathogenesis Home Division of Intramural Population Health Research Home Bonifacino Lab: Section on Intracellular Protein Trafficking Home Lilly Lab: Section on Gamete Development Home Lippincott-Schwartz Lab: Section on Organelle Biology